
Il Pianificatore LPG
Local Search for Planning Graphs

http://zeus.ing.unibs.it/lpg

Graphplan [Blum & Furst ’95]

• Planning Graph (PG): Directed acyclic “leveled” graph auto-
matically constructed from the problem specification.

• Nodes represent facts (goals, preconds, effects) or actions (and
no-ops = dummy actions propagating facts of previous levels)

• Edges connect action-nodes to precondition/effect nodes

• Levels correspond to time steps (points); each level and has a
layer of fact-nodes and a layer of action-nodes.

• Mutual exclusion relations between action-nodes and fact nodes
E.g., A mutex B because one deletes a precondition or effect of
the other

Planning = finding a subgraph of the PG representing
a valid plan

2

Example of Planning Graph

a b

c

 holding(?o)
 not(arm_empty)
 not(ontable(?o))

 ontable(?o)
 clear(?o)

unstack(?o, ?under_o)

ab

c

,

(goal state)

time

not(clear(?o))

arm_empty

putdown(?o)
Exclusive

Operators
pickup(?o)

effects:

pickup(?o)
preconditions:

stack(?o, ?under_o)

arm_empty

Goal level

Level 1

Level 0 clear(b)

pickup(b)

clear(c)

holding(b) clear(c)clear(b)

stack(c,b)

holding(b)clear(a) clear(c)

on(c,a) on−table(a)

stack(b,a)

clear(a)

unstack(c,a)

clear(b)

on−table(b) arm_empty

holding(c)

arm_empty on(c,b)

Initial: on−table(a) on−table(b) on(c,a)
clear(c) clear(b) arm−empty

Goal:
on(c,b) clear(c)
clear(a) arm−empty

3

Action Graphs

An action graph (A-graph) of a planning graph G is a subgraph of
G such that, if an action-node a is in A, then
• all the precondition-nodes/edges of a are in A
• all the effect-nodes and add-edges of a are in A

T
im

e

Level 1

Level 0

pickup(b)

clear(c)arm_empty

holding(b) clear(c)clear(b)

stack(c,b)

arm_emptyclear(a) clear(c)

on(c,a) on-table(a)

on(c,b)

Exclusive

Goals

unstack(c,a)

holding(c)clear(a)

clear(b)

on-table(b) clear(b)

Inconsistency in an action graph A:
• a pair of action-nodes in A that are “mutex”
• an action-node in A with an unsupported precondition-node

4

Linear Action Graph (LA-graph)

• Linearity: in each action layer one node representing an action

plus no-ops (does not imply linear output plans)

• Ordering constraints Ω

– from the causal structure:

if a is used for a precondition of b, then a+ ≺ b− ∈ Ω

– to order mutex actions:

if a and b are mutex, then a+ ≺ b− ∈ Ω or b+ ≺ a− ∈ Ω

• Represented plan: actions in the graph ordered by Ω

Correct plan if there is no flaw in the LA-graph (solution graph)

• Plan flaw: unsupported precondition-node of an action node

5

Example of Linear Action Graph

2 3 41

f3 f3

f2

f1

f4f4 f4

f3

f5 f5 f5 f5 f5

f6

f7 f7 f7 f7 f7

f8
f9 f9 f9

f10a1

a2

a3

a4

Level Level Level Level

INIT

aendastart

f6

mutex

f6

Goals

Plan actions: {a1, a2, a2, a3}

Plan flaw: unsupported precondition f6 of a4 (not executable)

21

Local Search in the Space of A-Graphs

Search space: set of all the A-graphs of the planning graph (G)

Initial state: any A-graph of G, e.g.,

• random A-graph

• A-graph with supported precondition/goal nodes

• A-graph from a valid plan for a similar problem (plan adaptation)

Search steps: graph modifications to resolve an inconsistency:

• graph extensions (inserting one or more actions into A);

• graph reductions (removing one or more actions from A);

• graph replacements (replacing an action with another action).

Goal states: A-graphs with no inconsistency (solution graphs)

Graph extension: automatic when a search limit is exceeded

7

General Local Search Procedure

1. While A is not a solution graph do

2. Choose an inconsistency (flaw) s in A;

3. Identify the neighborhood N(s,A) and weight its elements

using a parametrized action evaluation function E;

4. Select an A-graph from N(s,A) and apply the corresponding

graph modification to A.

N(s,A): set of all the action graphs derivable from A by applying

a graph modification resolving s.

Prefer flaws at the earliest graph level

8

Stochastic Search: Walkplan

Similar to the heuristic in Walksat [Selman et al.]

The A-graph selected from N(s,A) is:

• with probability p a graph in N(s,A) randomly chosen;

• with probability 1− p the best graph in N(s,A) according to E.

Action evaluation function

E :

{
E(a, A)insertion = αi · pre(a,A) + βi · |Threats(a,A)|
E(a,A)removal = γr · unsup(a,A)

pre(a,A): number of unsupported preconditions/goals of a

unsup(a,A): num. of supported preconditions becoming unsupported by adding a

Threats(a,A) = supported preconditions becoming unsupported by adding a
to A.

9

Effect Propagation

• An action effect f can be propagated to preconditions of the

next actions, unless there is another action interfering with f .

• If an action a interferes with f , the propagation is blocked at

the time step t of a. When a is removed, f is propagated from t.

• Propagation performed using the “no-ops” of the planning graph.

⇒ Stronger search steps One graph modification (search step)

can remove more than one inconsistency at different levels.

⇒ Extended neighborhood: a precondition can be supported by

inserting an action at any previous level (time step).

10

Heuristic Evaluation based on Relaxed Plans: Eπ

Eπ(a,A)i = |π(a,A)i| + ∑
a′∈π(a,A)i |Threats(a′,A)|

Eπ(a,A)r = |π(a,A)r| + ∑
a′∈π(a,A)r |Threats(a′,A)|

where

• π(a,A)i is an estimate of a minimal set of actions forming a

relaxed plan achieving Pre(a) and Threats(a,A);

• π(a,A)r is an estimate of a minimal set of actions forming a

relaxed plan achieving Unsup(a,A).

Relaxation: negative effects are ignored

11

Example of the Relaxed Plan

(30)

q2
(20)

q1

(35)
p6

[5]
anew (30)

p1

p1

astart

p1

p5

p5

p2
(0) (0)

(−) (50)

(0)

p5

(50)

p4

p9

p9

p9

p9

(70)

(70)

(70)

(70)

(−)

aend
(90)

(50)

p3
(0) (0)

p4

(0)

(0)

(0)

p3

p3

(0)

p3

p4
[50]
(0)a1

(70)

(70)

(70)

p8

p8

(70)

p8p7

(0)

mutex

(90)

p10

mutex

(0)
[70]a2

a3
[15]
(75)

p6
p4

(20)

(0)b1

q3
(0)

(0) (0)
p3 p4

I

Relaxed Plan π

b2
[10]
(20)

[20]

not(q1)

33

RelaxedPlan(G, I(l), A)

Input: A set of goal facts (G), the set of facts that are true after executing
the actions of the current LA-graph up to level l (I(l)), a possibly empty set of
actions (A);

Output: An estimated minimal set of actions required to achieve G.

1. G ←G−I(l); Acts ← A;
2. F ← ⋃

a∈Acts Add(a);
3. while G − F �= ∅
4. g ← a fact in G − F ;
5. bestact ← Bestaction(g);
6. Rplan ← RelaxedPlan(Pre(bestact), I(l), Acts);
7. Acts ← Rplan ∪ {bestact};
8. F ← ⋃

a∈Acts Add(a);
9. return Acts.

Bestaction(g) =ARGMIN
{a′∈Ag}

{
MAX

p∈Pre(a′)−F
Num acts(p, l) + |Threats(a′)|

}
,

where F is the set of positive effects of the actions currently in Acts, and Ag is
the set of actions with the effect g and with all preconditions reachable from the
initial state.

13

Relaxed Plan Construction (example)

Fact Num acts
p1 2
p2 2
p3 1
p5 6
p10 1
p12 2

Fact Time
p4 170
p6 300
p7 50
p8 30
p9 170
p11 30

Action Duration
a 30
a1 70
a3 100
a4 30
a6 90

mutex

mutex
a

Unsupported
precondition

INITl

a1 a2

a3

a4 a5

a6

p q

q

q

q

r

r

p1 p2

p3

p4

p4 p5 p6

p6p7 p8 p9

p9 p10

p11

p11

p12

level l + 1

Relaxed plan = {a1, a3, a4} ∪ {a6} End time({a1, a3, a4}) = 240

14

Simulation of plan generation using InLPG

15

Performance di LPG

• Attualmente uno dei pianificatori piú espressivivi

• Attualmente uno dei migliori pianificatori in termi di qualitá dei

piani

• Ma anche uno dei piú veloci:

– Nel 2002 ha vinto la international planning competition (IPC)

– Nel 2004 ha vinto il secondo posto nella IPC

16

Experimental Results: Computing a Plan

Planning LPG Blackbox GP- IPP STAN
problem Wplan Wsat Chaff CSP
rocket-a 0.05 1.25 5.99 1.55 20.2 6.49
rocket-b 0.06 1.51 6.16 3.02 38.83 4.24
log-a 0.22 3.21 5.93 1.60 777.8 0.24
log-b 0.28 5.76 6.74 22.7 341.0 1.11
log-c 0.32 14.28 7.19 28.8 — 896.6
log-d 0.42 35.10 11.5 98.0 — —
bw-large-a 0.24 2.06 0.69 6.82 0.17 0.21
bw-large-b 0.61 131.0 51.6 783 12.39 5.4
TSP-7 0.02 0.14 0.11 0.13 0.04 0.01
TSP-10 0.03 0.72 6.47 8.48 1.96 0.04
TSP-15 0.07 31.23 — — 419.0 0.26
TSP-30 0.39 out — — — 11.9
gripper10 0.31 — — — 40.38 36.3
gripper12 0.74 — — — 330.1 810.2

“—” means > 1,500; out means out of memory (768 Mbytes)

LPG is up to 4 orders of magnitude faster

17

Temporal Action Graphs

Temporal Action Graph (TA-graph): a triple 〈A, T ,Ω〉 such that

• A: A-graph with only one action-node per level (+ “no-ops”)

• T : assignment of real values to the fact and action nodes of A

• Ω: set of ordering constraints between action nodes of A

Inconsistencies in TA-graphs:

• action-nodes with an unsupported precondition node

No-ops propagation [AIPS-02]:

• No-ops nodes used to propagate effect nodes of actions in A to
the next levels

• No-op propagation blocked by action nodes that are mutex with
the no-op

18

TA-Graphs: Temporal Values and

Ordering Constraints

Assumption (in the talk): preconditions overall and effects at end

T -values of action and fact nodes (Time(x)):

• Time(f) = minimum over the time values of the action-nodes supporting f

• Time(a) = duration of a + maximum over time values of its preconditions

and times of actions preceding a according to Ω

Two types of Ω-constraints (≺C and ≺E):

• a ≺C b ∈ Ω if an effect of a is used to achieve a precondition of b

• a ≺E b ∈ Ω if a and b are mutually exclusive and Level(a) < Level(b)

Plan action start times derived from the Time-values (� parallelism)

19

Example of TA-Graph

(50)

(−)

(160)

(120)

(160)

[40]
(160)

(−)

(50)

(120)

(120)

(220)
[100]

(0)

(50)

(50)

(120)

(220)
(120)
[70]

(50)
[50]

(0)

LevelLevelLevel 2 3 4Level1

(0)

(0)

(0) (0)

mutex

INIT

a1

a2

a3

a4

f1

f2

f3 f3f3

f4f4 f4

f5f5f5f5f5

f6f6f6f6f6

f7f7f7f7f7

f8
f9f9f9

f10

Ω = {a1 ≺C a4, a2 ≺C a3} ∪ {a1 ≺E a2, a2 ≺E a4}

Causal precedence Exclusion precedence

20

Local Search in the Space of TA-Graphs

Initial state: TA-graph containing only astart, aend (+ no-ops)

Search steps: graph changes removing an inconsistency σ at level l:

• Inserting an action node at a level l′ preceding l

⇒ TA-graph extended by one level (all actions from l′ shifted forward)

• Removing the action node a responsible of σ

⇒ Action nodes used only to support the preconds of a are removed as well

Goal states (solution TA-graphs): TA-graphs 〈A, T ,Ω〉 where

• A is a solution graph

• T is consistent with Ω and the duration of the actions in A

• Ω is consistent, and if a and b are mutex, Ω |= a ≺ b or Ω |= b ≺ a.

21

Maintaining Temporal Information

During Search

When an action node a is added to support a precondition of b:

• Ω = Ω ∪ {a ≺ b}
• ∀ c mutex(a, c) & Level(a) < Level(c): Ω = Ω ∪ {a ≺ c}
• ∀ d mutex(a, d) & Level(d) < Level(a): Ω = Ω ∪ {d ≺ d}
• ∀ action/fact node x “temporally influenced” by a: Time(x) is updated

When an action node a with unsupported precondition is removed:

• ∀ ordering constraint ω involving a: Ω = Ω − {ω}
• ∀ action/fact node x “temporally influenced” by a: Time(x) is updated

⇒ The computation of Time(x) takes account of different types of preconditions
(overall, at start, at end) and effects (at start, at end).

22

Example of Action Insertion
(original graph)

(50)

(−)

(160)

(120)

(160)

[40]
(160)

(−)

(50)

(120)

(120)

(220)
[100]

(0)

(50)

(50)

(120)

(220)
(120)
[70]

(50)
[50]

(0)

LevelLevelLevel 2 3 4Level1

(0)

(0)

(0) (0)

mutex

INIT

a1

a2

a3

a4

f1

f2

f3 f3f3

f4f4 f4

f5f5f5f5f5

f6f6f6f6f6

f7f7f7f7f7

f8
f9f9f9

f10

Ω = {a1 ≺C a4, a2 ≺C a3} ∪ {a1 ≺E a2, a2 ≺E a4}
Causal precedence Exclusion precedence

23

TA-graph after Insertion of a5

4Level

(50)

(220)
[100]

(0)

(0)

(50)

(50)

(120)
[70]

(0)

(0)

LevelLevel 2 3

(270)

(220)

[40]
(270)

(50)

(−)

(220)

(50)

(230)

5Level

(0)

(0)

Level 1

(−)

(120)
(120)

(120)

(120)

[110]
(230)

(120)

(50)
[50]

(220)

mutex

INIT

a1

a2

a3

a4

a5

f1

f2

f3 f3 f3

f4 f4 f4

f5f5f5f5f5f5f5

f6 f6f6f6f6f6f6

f7 f7f7f7f7f7

f8

f8

f9f9f9f9f9

f10

↑ new action and level

a5 = new action to support f6

Ω = {a1 ≺C a4, a2 ≺C a3, a5 ≺C a4 } ∪ {a1 ≺E a2, a2 ≺E a4}

24

Action Evaluation Function (E)

Estimates the cost of inserting a (E(a)i) or removing a (E(a)r):

E(a)i = α ·Exec cost(a)i+β ·Temporal cost(a)i+γ ·Search cost(a)i

E(a)r = α·Exec cost(a)r+β ·Temporal cost(a)r+γ ·Search cost(a)r

The three terms of E estimate the

• increase of the plan execution cost: Exec cost

• end time of a: Temporal cost

• increase of # of the search steps to reach a solution: Search cost

α, β and γ normalize the terms and weight their relative importance

(dynamically computed during search – see paper)

25

Relaxed Plans for E(a)i (basic idea)

• Compute a relaxed plan π (no action interference) for

(1) the unsupported preconds of a and

(2) the preconds of actions “threatened by a” at the next levels

a threatens p = p is supported and an effect of a denies p

⇒ Search cost(a) = # of actions in π + # of their threats

Temporal cost(a) = end time of subplan for (1) + duration of a

Execution cost(a) = sum of the costs of the actions in π

• π constructed in the context of the current TA-graph A:

– actions in A at preceding levels define the initial state for π

– actions for π threatening other actions in A are penalized

26

Relaxed Plans for E(a)i (basic idea, cont.)

π constructed by a backward process from Preconds(a) and Threats(a)

INITl = state reached by the actions preceding the level l of a

b is the best action to achieve a (sub)goal g in π if

(1) g is an effect of b, and all preconds of b reachable from INITl

(2) satisfying the preconds of b from INITl requires a min number of actions

(3) b threatens a min number of preconds of actions in the TA-graph

⇓
BestAction(g) =ARGMIN

b′→(1)

{
MAX

p∈Pre(b′)−F
Num acts(p, l) + |Threats(b′)|

}

(F = preconds already achieved in π)

Num acts(p, l) = estimate of minimum number of actions required

to achieve p from INITl (dynamically computed).

27

Relaxed Plan for E(a)i (example)

Fact Num acts
p1 2
p2 2
p3 1
p5 6
p10 1
p12 2

Fact Time
p4 170
p6 300
p7 50
p8 30
p9 170
p11 30

Action Duration
a 30
a1 70
a3 100
a4 30
a6 90

mutex

mutex
a

Unsupported
precondition

INITl

a1 a2

a3

a4 a5

a6

p q

q

q

q

r

r

p1 p2

p3

p4

p4 p5 p6

p6p7 p8 p9

p9 p10

p11

p11

p12

level l + 1

Relaxed plan = {a1, a3, a4} ∪ {a6} End time({a1, a3, a4}) = 240

28

RelaxedPlan(G, INITl, A)

1. t ← MAX
g∈G∩INITl

T ime(g);

2. G ← G − INITl; ACTS ← A;

3. F ← ⋃
a∈ACTS Add(a);

4. t ← MAX

{
t, MAX

g∈G∩F
T(g)

}
;

5. while G − F �= ∅
6. g ← a fact in G − F ;

7. bestact ← Bestaction(g);

8. Rplan ← RelaxedPlan(Pre(bestact), INITl, ACTS);

9. forall f ∈ Add(bestact) − F

10. T(f) ← End time(Rplan) + Duration(bestact);

11. ACTS ← Aset(Rplan) ∪ {bestact};
12. F ← ⋃

a∈ACTS Add(a);

13. t ← MAX{t, End time(Rplan) + Duration(bestact)};
14. return 〈ACTS, t〉.

29

EvalAdd(a)

1. INITl ← Supported facts(Level(a));

2. Rplan ← RelaxedPlan(Pre(a), INITl, ∅);
3. t1 ← MAX{0, MAX{Time(a′) | Ω |= a′ ≺ a}};
4. t2 ← MAX{t1, End time(Rplan)};
5. A ← Aset(Rplan) ∪ {a};
6. Rplan ← RelaxedPlan(Threats(a), INITl − Threats(a), A);

7. return 〈Aset(Rplan), t2 + Duration(a)〉.

E(a)i

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Execution cost(a)i =
∑

a′∈ Aset(EvalAdd(a)) Cost(a′)

Temporal cost(a)i = End time(EvalAdd(a))

Search cost(a)i = |Aset(EvalAdd(a))|+∑
a′∈Aset(EvalAdd(a)) |Threats(a′)|

30

Experimental Results

(All IPC 2004 Planners)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 2 4 6 8 10 12 14 16 18 20

Satellite-TimeMilliseconds

LPG-speed (20 solved)
MIPS (10 solved)
MIPS (Plan) (19 solved)
Sapa (19 solved)
TP4 (2 solved)

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12 14 16 18 20

Satellite-TimeQuality

LPG-quality (20 solved)
MIPS (10 solved)
MIPS (Plan) (19 solved)
Sapa (19 solved)
TP4 (2 solved)

LPG data are median values over five runs

Plan quality: minimization of a metric expression

CPU-time: milliseconds in logarithmic scale

31

Incremental Plan Quality

• Generation of a sequence of valid plans.

• Each plan improves the quality of the previous one.

LPG ππ0 i π1, π2, π3,

π0 = initial A-graph
π1 = first valid plan computed by LPG
πi = i-th valid plan (of quality better than πi−1)

• Each computed plan (with some forced inconsistencies) be-
comes the initial A-graph of a new search.

⇒ Anytime process: the system can be stopped at any time to
give the best plan computed so far.

32

Experimental Results: Plan Quality

Global cost = 4019

package_4
City_8_1

City_1_3

package_1

City_9_8

City_5_9
package_2

package_3

(a)
Airplane1

Arplane2

Source

2

1

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 90

0

Global cost = 2664

Source

package_4
package_1

package_3
City_1_3

City_9_8City_8_1

City_5_9

package_2

(b) Airplane1

Arplane2

1 3 4 5 6 7 8 920

0

1

2

3

4

5

6

7

8

9

33

Global cost = 2369

Source

City_1_3

City_8_1

(c)

package_4
package_1

City_9_8

City_5_9

package_2

package_3

Airplane1

Arplane2

0 1 2 4 5 6 7 8 93

1

2

3

4

5

6

6

7

8

9

0

Incremental Plan Quality: TSP

250

300

350

400

450

500

550

600

650

0.1 1 10

CPU-SECONDS (log scale)

Plan cost for TSP 7

Optimal cost

FF solution

34

Incremental Plan Quality: Logistics

20000

30000

40000

50000

60000

70000

80000

0.1 1 10

CPU-SECONDS (log scale)

Plan cost for Logistics-b with connections

Optimal cost

FF solution

Incremental Plan Quality

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 10 100 1000 10000 100000 1e+06

CPU Time

Satellite-Time-pfile6Quality

LPG (1st run, 11 solutions found)
LPG (2nd run, 10 solutions found)
LPG (3rd run, 10 solutions found)
LPG (4th run, 11 solutions found)
LPG (5th run, 11 solutions found)
SuperPlanner (2 solutions found)

35

Incremental Plan Quality with InLPG

(demo)

36

Timed Literals & Exogenous Events

• Useful to represent predictable exogenous events that happen

at known times, and cannot be influenced by the planning agent.

For instance (using PDDL notation):

(at 8 (open-fuelstation city1))

(at 12 (not (open-fuelstation city1)))

(at 15 (open-fuelstation city1))

(at 19 (not (open-fuelstation city1)))

• Timed literals in the preconditions of an action impose

scheduling constraints to the action:

If (refuel car city1) has over all condition open-fuelstation,

it must be executed during the time window [8,12] or [15,19].

(Similarly for other types of action conditions)

7

DTP Constraints for PDDL2.2 Domains

• Action ordering constraints

E.g., a must end (a+) before the start of b (b−): a+ ≺ b−

a+ ≺ b− ≡ a+ − b− ≤ 0

• Duration Constraints

E.g., (a+ − a− ≤ 10) ∧ (a− − a+ ≤ −10))

• Scheduling constraints (in compact DTP-form):∨
w∈W (p)

((
astart − a− ≤ −w−

)
∧

(
a+ − astart ≤ w+

))
.

If p over all timed condition with windows W (p) = {w1, . . . , wn}
(astart is a special instantaneous action preceding all others)

Note: we can compile all timed conditions of an action into a single over all

timed precondition (with more time windows)

9

Temporally Disjunctive LA-graph

A Temporally Disjunctive Action Graph (TDA-graph) is a

4-tuple 〈A, T ,P, C〉 where

• A is a linear action graph;

• T is an assignment of real values to the nodes of A (determined

by solving the DTP 〈P, C〉)

• P is the set of time point variables representing the start/end

times of the actions labeling the action nodes of A;

• C is a set of ordering constraints, duration constraints and schedul-

ing constraints involving variables in P.

Propositional flaw: unsupported precondition node

Temporal flaw : action unscheduled by T (〈P, C〉 is unsolvable)

14

Example of TDA-graph

p

(−)

(0)

p1

(0)

p5p5 p5 a3

(50) (50) (50)

[15]

(0)

m
u
te

x

p7

p8

p9p9p9

a2

p4p4 p4

(0) (0) (70) (70) (70) (70)

p8 p8

(70) (70) (70)

(0) [70]

(0) p9

[50]
(0)

(75)

(70)

p3

m
u
te

x

p3p3 p3

(0)(0)

(90)

(−)

p10

aend

p6

(90)

p1

a1

astart

p2

p1

a3

0

a1

a2

25 50 75 90

astart

aend

p

125

p

C =


a+
1 ≺ a−3 , a+

2 ≺ a−3 , astart ≺ a−i , a+
i ≺ aend (i = 1 · · ·3)

a+
1 − a−1 = 50, a+

2 − a−2 = 70, a+
3 − a−3 = 15

Wp = {[25,50), [75,125)} ⇒ a3 during [25,50] or [75,125]

15

Temporal values in a TDA-graph

• The DTP D = 〈P, C〉 of a TDA-graph 〈A, T ,P, C〉 represents a

set of induced STPs

• Induced STP: satisfiable STP with all unary constraints of C
and one disjunct (time window) for each disjunctive constraint

• Optimal induced STP for aend: an induced STP with a so-

lution assigning to aend the minimum possible value

• Optimal schedule for D = T -values: ⇒ optimal solution of

an optimal induced STP for aend

Can be computed in polytime by a backtrack-free algoritm!

25

Solving the DTP of a TDA-graph

Finding a solution for a DTP ⇒ solving a meta CSP:

[Stergiou & Koubarakis, Tsamardinos & Pollack, and others]

• Meta variables: constraints of the DTP

• Meta variable values: constraint disjuncts

• Implicit meta constraint: the values (constraint disjuncts) of the

meta variables form a satisfiable STP

Solution of the meta CSP = complete induced STP of the DTP

In general NP-hard, but polynomial for the DTP of a TDA-graph:

Theorem : Given the DTP D of a TDA-graph, deciding satisfia-

bility of D and finding an optimal schedule for D (if one exists) can

be accomplished in polynomial time.

17

Solving the DTP of a TDA-Graph
[Stergiou & Koubarakis ’00, Tsamardinos & Pollack ’03]

Solve-DTP(X,S)
1. if X = ∅ then stop and return S;

2. x← SelectVariable(X) ; X ′ ← X − {x};
3. while D(x) 6= ∅ do

4. d← SelectValue(D(x)) ; D(x)← D(x)− {d};
5. D′(x)← D(x);
6. if ForwardChecking-DTP(X ′, S) then Solve-DTP(X ′, S ∪ {d});
7. D(x)← D′(x);
8. return fail; /* backtracking */

ForwardChecking-DTP(X,S)
1. forall x ∈ X do
2. forall d ∈ D(x) do
3. if not Consistency-STP(S ∪ d) then D(x)← D(x)− {d};
4. if D(x) = ∅ then return false;
5. return true.

SelectV ariable: variables ordered w.r.t. the levels of the TDA-graph

SelectV alue: values ordered w.r.t. the windows in the constraint

⇒ No backtracking + Optimality of the induced STP!
26

Planning with TDA-Graphs

Initial state: TDA-graph containing only astart (initial state),

aend (problem goals) + no-ops

Goal states: TDA-graphs without flaws (solution TDA-graph)

Basic search steps: graph changes for repairing a flaw σ at a level `

• Inserting an action node at a level `′ < ` (for propositional flaws)

• Removing an action node:

– at a level `′ ≤ ` (if σ is a propositional flaw), or

– an action at `′ < ` decreasing the earliest start time of σ

(if σ is a temporal flaw = unscheduled action node).

The DTP of the TDA-graph is dynamically updated at each search step

27

Example: TDA-graph before Action Insertion

(−)

(0)

p1
(0)

p5p5 p5 a3

(50) (50) (50)

[15]

(0)

m
u
te

x

p7

p8

p9p9p9

a2

p4p4 p4

(0) (0) (70) (70) (70) (70)

p8 p8

(70) (70) (70)

(0) [70]

(0) p9

[50]
(0)

(75)

(70)

p3

m
u
te

x

p3p3 p3
(0)(0)

(90)

(−)

p10

aend

p6

(90)

p1

a1

astart

p2

p1

↑
Selected flawed level (propositional flaw: p6)

28

TDA-graph after Insertion of anew
new level

p5

(0)

p1
(0)

(0)

m
u
te

x

p4 p4

(0) (0)

[50]
(0)

p3

(0)

p1

a1

astart

p2

(−)

p1

p5 a3

(50) (50) (50)

[15]

p7

p8

p9p9p9

a2
(100) (100) (100)

p8 p8

(100) (100) (100)

(0) [70]

p9

(100)

(100)

(115)

(30)

p10

aend

(115)

p5

p4

p6

p5

p4

p3
(0)

p4

p3

anew

(50)(50)

p5

(0)

p3

m
u
te

x

[30]
(0)

(30)

(100)

New temporal variables/constraints: a+
new ≺ a−2 , Dur(anew) = 30, Win(anew)=[0,+∞]

In general: also constraints for mutex actions; actions can become unscheduled

29

