
Il Pianificatore LPG
Local Search for Planning Graphs

http://zeus.ing.unibs.it/lpg



Graphplan [Blum & Furst ’95]

• Planning Graph (PG): Directed acyclic “leveled” graph auto-
matically constructed from the problem specification.

• Nodes represent facts (goals, preconds, effects) or actions (and
no-ops = dummy actions propagating facts of previous levels)

• Edges connect action-nodes to precondition/effect nodes

• Levels correspond to time steps (points); each level and has a
layer of fact-nodes and a layer of action-nodes.

• Mutual exclusion relations between action-nodes and fact nodes
E.g., A mutex B because one deletes a precondition or effect of
the other

Planning = finding a subgraph of the PG representing
a valid plan
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Example of Planning Graph

a b

c

  holding(?o)
  not(arm_empty)
  not(ontable(?o))

    ontable(?o)
  clear(?o)  

unstack(?o, ?under_o)

ab

c

,

(goal state)

time

not(clear(?o))

arm_empty

putdown(?o)
Exclusive

Operators
pickup(?o)

effects: 

pickup(?o)
preconditions: 

stack(?o, ?under_o)   

arm_empty

Goal level

Level 1

Level 0 clear(b)

pickup(b)

clear(c)

holding(b) clear(c)clear(b)

stack(c,b)

holding(b)clear(a) clear(c)

on(c,a) on−table(a)

stack(b,a)

clear(a)

unstack(c,a)

clear(b)

on−table(b) arm_empty

holding(c)

arm_empty on(c,b)

Initial: on−table(a)    on−table(b)    on(c,a)
clear(c)    clear(b)    arm−empty

Goal:
on(c,b)     clear(c)
clear(a)    arm−empty
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Action Graphs

An action graph (A-graph) of a planning graph G is a subgraph of
G such that, if an action-node a is in A, then
• all the precondition-nodes/edges of a are in A
• all the effect-nodes and add-edges of a are in A

T
im

e

Level 1

Level 0

pickup(b)

clear(c)arm_empty

holding(b) clear(c)clear(b)

stack(c,b)

arm_emptyclear(a) clear(c)

on(c,a) on-table(a)

on(c,b)

Exclusive

Goals

unstack(c,a)

holding(c)clear(a)

clear(b)

on-table(b) clear(b)

Inconsistency in an action graph A:
• a pair of action-nodes in A that are “mutex”
• an action-node in A with an unsupported precondition-node
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Linear Action Graph (LA-graph)

• Linearity: in each action layer one node representing an action

plus no-ops (does not imply linear output plans)

• Ordering constraints Ω

– from the causal structure:

if a is used for a precondition of b, then a+ ≺ b− ∈ Ω

– to order mutex actions:

if a and b are mutex, then a+ ≺ b− ∈ Ω or b+ ≺ a− ∈ Ω

• Represented plan: actions in the graph ordered by Ω

Correct plan if there is no flaw in the LA-graph (solution graph)

• Plan flaw: unsupported precondition-node of an action node
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Example of Linear Action Graph
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Level Level Level Level

INIT

aendastart

f6

mutex

f6

Goals

Plan actions: {a1, a2, a2, a3}

Plan flaw: unsupported precondition f6 of a4 (not executable)
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Local Search in the Space of A-Graphs

Search space: set of all the A-graphs of the planning graph (G)

Initial state: any A-graph of G, e.g.,

• random A-graph

• A-graph with supported precondition/goal nodes

• A-graph from a valid plan for a similar problem (plan adaptation)

Search steps: graph modifications to resolve an inconsistency:

• graph extensions (inserting one or more actions into A);

• graph reductions (removing one or more actions from A);

• graph replacements (replacing an action with another action).

Goal states: A-graphs with no inconsistency (solution graphs)

Graph extension: automatic when a search limit is exceeded
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General Local Search Procedure

1. While A is not a solution graph do

2. Choose an inconsistency (flaw) s in A;

3. Identify the neighborhood N(s,A) and weight its elements

using a parametrized action evaluation function E;

4. Select an A-graph from N(s,A) and apply the corresponding

graph modification to A.

N(s,A): set of all the action graphs derivable from A by applying

a graph modification resolving s.

Prefer flaws at the earliest graph level
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Stochastic Search: Walkplan

Similar to the heuristic in Walksat [Selman et al.]

The A-graph selected from N(s,A) is:

• with probability p a graph in N(s,A) randomly chosen;

• with probability 1− p the best graph in N(s,A) according to E.

Action evaluation function

E :

{
E(a, A)insertion = αi · pre(a,A) + βi · |Threats(a,A)|
E(a,A)removal = γr · unsup(a,A)

pre(a,A): number of unsupported preconditions/goals of a

unsup(a,A): num. of supported preconditions becoming unsupported by adding a

Threats(a,A) = supported preconditions becoming unsupported by adding a
to A.
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Effect Propagation

• An action effect f can be propagated to preconditions of the

next actions, unless there is another action interfering with f .

• If an action a interferes with f , the propagation is blocked at

the time step t of a. When a is removed, f is propagated from t.

• Propagation performed using the “no-ops” of the planning graph.

⇒ Stronger search steps One graph modification (search step)

can remove more than one inconsistency at different levels.

⇒ Extended neighborhood: a precondition can be supported by

inserting an action at any previous level (time step).
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Heuristic Evaluation based on Relaxed Plans: Eπ

Eπ(a,A)i = |π(a,A)i| + ∑
a′∈π(a,A)i |Threats(a′,A)|

Eπ(a,A)r = |π(a,A)r| + ∑
a′∈π(a,A)r |Threats(a′,A)|

where

• π(a,A)i is an estimate of a minimal set of actions forming a

relaxed plan achieving Pre(a) and Threats(a,A);

• π(a,A)r is an estimate of a minimal set of actions forming a

relaxed plan achieving Unsup(a,A).

Relaxation: negative effects are ignored
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Example of the Relaxed Plan
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RelaxedPlan(G, I(l), A)

Input: A set of goal facts (G), the set of facts that are true after executing
the actions of the current LA-graph up to level l (I(l)), a possibly empty set of
actions (A);

Output: An estimated minimal set of actions required to achieve G.

1. G ←G−I(l); Acts ← A;
2. F ← ⋃

a∈Acts Add(a);
3. while G − F �= ∅
4. g ← a fact in G − F ;
5. bestact ← Bestaction(g);
6. Rplan ← RelaxedPlan(Pre(bestact), I(l), Acts);
7. Acts ← Rplan ∪ {bestact};
8. F ← ⋃

a∈Acts Add(a);
9. return Acts.

Bestaction(g) =ARGMIN
{a′∈Ag}

{
MAX

p∈Pre(a′)−F
Num acts(p, l) + |Threats(a′)|

}
,

where F is the set of positive effects of the actions currently in Acts, and Ag is
the set of actions with the effect g and with all preconditions reachable from the
initial state.
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Relaxed Plan Construction (example)

Fact Num acts
p1 2
p2 2
p3 1
p5 6
p10 1
p12 2

Fact Time
p4 170
p6 300
p7 50
p8 30
p9 170
p11 30

Action Duration
a 30
a1 70
a3 100
a4 30
a6 90

mutex

mutex
a

Unsupported
precondition

INITl

a1 a2

a3

a4 a5

a6

p q

q

q

q

r

r

p1 p2

p3

p4

p4 p5 p6

p6p7 p8 p9

p9 p10

p11

p11

p12

level l + 1

Relaxed plan = {a1, a3, a4} ∪ {a6} End time({a1, a3, a4}) = 240
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Simulation of plan generation using InLPG
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Performance di LPG

• Attualmente uno dei pianificatori piú espressivivi

• Attualmente uno dei migliori pianificatori in termi di qualitá dei

piani

• Ma anche uno dei piú veloci:

– Nel 2002 ha vinto la international planning competition (IPC)

– Nel 2004 ha vinto il secondo posto nella IPC
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Experimental Results: Computing a Plan

Planning LPG Blackbox GP- IPP STAN
problem Wplan Wsat Chaff CSP
rocket-a 0.05 1.25 5.99 1.55 20.2 6.49
rocket-b 0.06 1.51 6.16 3.02 38.83 4.24
log-a 0.22 3.21 5.93 1.60 777.8 0.24
log-b 0.28 5.76 6.74 22.7 341.0 1.11
log-c 0.32 14.28 7.19 28.8 — 896.6
log-d 0.42 35.10 11.5 98.0 — —
bw-large-a 0.24 2.06 0.69 6.82 0.17 0.21
bw-large-b 0.61 131.0 51.6 783 12.39 5.4
TSP-7 0.02 0.14 0.11 0.13 0.04 0.01
TSP-10 0.03 0.72 6.47 8.48 1.96 0.04
TSP-15 0.07 31.23 — — 419.0 0.26
TSP-30 0.39 out — — — 11.9
gripper10 0.31 — — — 40.38 36.3
gripper12 0.74 — — — 330.1 810.2

“—” means > 1,500; out means out of memory (768 Mbytes)

LPG is up to 4 orders of magnitude faster
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Temporal Action Graphs

Temporal Action Graph (TA-graph): a triple 〈A, T ,Ω〉 such that

• A: A-graph with only one action-node per level (+ “no-ops”)

• T : assignment of real values to the fact and action nodes of A

• Ω: set of ordering constraints between action nodes of A

Inconsistencies in TA-graphs:

• action-nodes with an unsupported precondition node

No-ops propagation [AIPS-02]:

• No-ops nodes used to propagate effect nodes of actions in A to
the next levels

• No-op propagation blocked by action nodes that are mutex with
the no-op
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TA-Graphs: Temporal Values and

Ordering Constraints

Assumption (in the talk): preconditions overall and effects at end

T -values of action and fact nodes (Time(x)):

• Time(f) = minimum over the time values of the action-nodes supporting f

• Time(a) = duration of a + maximum over time values of its preconditions

and times of actions preceding a according to Ω

Two types of Ω-constraints (≺C and ≺E):

• a ≺C b ∈ Ω if an effect of a is used to achieve a precondition of b

• a ≺E b ∈ Ω if a and b are mutually exclusive and Level(a) < Level(b)

Plan action start times derived from the Time-values (� parallelism)
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Example of TA-Graph
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Local Search in the Space of TA-Graphs

Initial state: TA-graph containing only astart, aend (+ no-ops)

Search steps: graph changes removing an inconsistency σ at level l:

• Inserting an action node at a level l′ preceding l

⇒ TA-graph extended by one level (all actions from l′ shifted forward)

• Removing the action node a responsible of σ

⇒ Action nodes used only to support the preconds of a are removed as well

Goal states (solution TA-graphs): TA-graphs 〈A, T ,Ω〉 where

• A is a solution graph

• T is consistent with Ω and the duration of the actions in A

• Ω is consistent, and if a and b are mutex, Ω |= a ≺ b or Ω |= b ≺ a.
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Maintaining Temporal Information

During Search

When an action node a is added to support a precondition of b:

• Ω = Ω ∪ {a ≺ b}
• ∀ c mutex(a, c) & Level(a) < Level(c): Ω = Ω ∪ {a ≺ c}
• ∀ d mutex(a, d) & Level(d) < Level(a): Ω = Ω ∪ {d ≺ d}
• ∀ action/fact node x “temporally influenced” by a: Time(x) is updated

When an action node a with unsupported precondition is removed:

• ∀ ordering constraint ω involving a: Ω = Ω − {ω}
• ∀ action/fact node x “temporally influenced” by a: Time(x) is updated

⇒ The computation of Time(x) takes account of different types of preconditions
(overall, at start, at end) and effects (at start, at end).
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Example of Action Insertion
(original graph)
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TA-graph after Insertion of a5
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Action Evaluation Function (E)

Estimates the cost of inserting a (E(a)i) or removing a (E(a)r):

E(a)i = α ·Exec cost(a)i+β ·Temporal cost(a)i+γ ·Search cost(a)i

E(a)r = α·Exec cost(a)r+β ·Temporal cost(a)r+γ ·Search cost(a)r

The three terms of E estimate the

• increase of the plan execution cost: Exec cost

• end time of a: Temporal cost

• increase of # of the search steps to reach a solution: Search cost

α, β and γ normalize the terms and weight their relative importance

(dynamically computed during search – see paper)
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Relaxed Plans for E(a)i (basic idea)

• Compute a relaxed plan π (no action interference) for

(1) the unsupported preconds of a and

(2) the preconds of actions “threatened by a” at the next levels

a threatens p = p is supported and an effect of a denies p

⇒ Search cost(a) = # of actions in π + # of their threats

Temporal cost(a) = end time of subplan for (1) + duration of a

Execution cost(a) = sum of the costs of the actions in π

• π constructed in the context of the current TA-graph A:

– actions in A at preceding levels define the initial state for π

– actions for π threatening other actions in A are penalized

26



Relaxed Plans for E(a)i (basic idea, cont.)

π constructed by a backward process from Preconds(a) and Threats(a)

INITl = state reached by the actions preceding the level l of a

b is the best action to achieve a (sub)goal g in π if

(1) g is an effect of b, and all preconds of b reachable from INITl

(2) satisfying the preconds of b from INITl requires a min number of actions

(3) b threatens a min number of preconds of actions in the TA-graph

⇓
BestAction(g) =ARGMIN

b′→(1)

{
MAX

p∈Pre(b′)−F
Num acts(p, l) + |Threats(b′)|

}

(F = preconds already achieved in π)

Num acts(p, l) = estimate of minimum number of actions required

to achieve p from INITl (dynamically computed).
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Relaxed Plan for E(a)i (example)

Fact Num acts
p1 2
p2 2
p3 1
p5 6
p10 1
p12 2

Fact Time
p4 170
p6 300
p7 50
p8 30
p9 170
p11 30

Action Duration
a 30
a1 70
a3 100
a4 30
a6 90

mutex

mutex
a

Unsupported
precondition

INITl

a1 a2

a3

a4 a5

a6

p q

q

q

q

r

r

p1 p2

p3

p4

p4 p5 p6

p6p7 p8 p9

p9 p10

p11

p11

p12

level l + 1

Relaxed plan = {a1, a3, a4} ∪ {a6} End time({a1, a3, a4}) = 240
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RelaxedPlan(G, INITl, A)

1. t ← MAX
g∈G∩INITl

T ime(g);

2. G ← G − INITl; ACTS ← A;

3. F ← ⋃
a∈ACTS Add(a);

4. t ← MAX

{
t, MAX

g∈G∩F
T(g)

}
;

5. while G − F �= ∅
6. g ← a fact in G − F ;

7. bestact ← Bestaction(g);

8. Rplan ← RelaxedPlan(Pre(bestact), INITl, ACTS);

9. forall f ∈ Add(bestact) − F

10. T(f) ← End time(Rplan) + Duration(bestact);

11. ACTS ← Aset(Rplan) ∪ {bestact};
12. F ← ⋃

a∈ACTS Add(a);

13. t ← MAX{t, End time(Rplan) + Duration(bestact)};
14. return 〈ACTS, t〉.
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EvalAdd(a)

1. INITl ← Supported facts(Level(a));

2. Rplan ← RelaxedPlan(Pre(a), INITl, ∅);
3. t1 ← MAX{0, MAX{Time(a′) | Ω |= a′ ≺ a}};
4. t2 ← MAX{t1, End time(Rplan)};
5. A ← Aset(Rplan) ∪ {a};
6. Rplan ← RelaxedPlan(Threats(a), INITl − Threats(a), A);

7. return 〈Aset(Rplan), t2 + Duration(a)〉.

E(a)i

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Execution cost(a)i =
∑

a′∈ Aset(EvalAdd(a)) Cost(a′)

Temporal cost(a)i = End time(EvalAdd(a))

Search cost(a)i = |Aset(EvalAdd(a))|+∑
a′∈Aset(EvalAdd(a)) |Threats(a′)|
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Experimental Results

(All IPC 2004 Planners)
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Incremental Plan Quality

• Generation of a sequence of valid plans.

• Each plan improves the quality of the previous one.

LPG ππ0 i π1, π2, π3, ....

π0 = initial A-graph
π1 = first valid plan computed by LPG
πi = i-th valid plan (of quality better than πi−1)

• Each computed plan (with some forced inconsistencies) be-
comes the initial A-graph of a new search.

⇒ Anytime process: the system can be stopped at any time to
give the best plan computed so far.
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Experimental Results: Plan Quality
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Global cost = 2369
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Incremental Plan Quality: TSP
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Incremental Plan Quality: Logistics
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Incremental Plan Quality
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Incremental Plan Quality with InLPG

(demo)
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Timed Literals & Exogenous Events

• Useful to represent predictable exogenous events that happen

at known times, and cannot be influenced by the planning agent.

For instance (using PDDL notation):

(at 8 (open-fuelstation city1))

(at 12 (not (open-fuelstation city1)))

(at 15 (open-fuelstation city1))

(at 19 (not (open-fuelstation city1)))

• Timed literals in the preconditions of an action impose

scheduling constraints to the action:

If (refuel car city1) has over all condition open-fuelstation,

it must be executed during the time window [8,12] or [15,19].

(Similarly for other types of action conditions)
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DTP Constraints for PDDL2.2 Domains

• Action ordering constraints

E.g., a must end (a+) before the start of b (b−): a+ ≺ b−

a+ ≺ b− ≡ a+ − b− ≤ 0

• Duration Constraints

E.g., (a+ − a− ≤ 10) ∧ (a− − a+ ≤ −10))

• Scheduling constraints (in compact DTP-form):∨
w∈W (p)

((
astart − a− ≤ −w−

)
∧

(
a+ − astart ≤ w+

))
.

If p over all timed condition with windows W (p) = {w1, . . . , wn}
(astart is a special instantaneous action preceding all others)

Note: we can compile all timed conditions of an action into a single over all

timed precondition (with more time windows)

9



Temporally Disjunctive LA-graph

A Temporally Disjunctive Action Graph (TDA-graph) is a

4-tuple 〈A, T ,P, C〉 where

• A is a linear action graph;

• T is an assignment of real values to the nodes of A (determined

by solving the DTP 〈P, C〉)

• P is the set of time point variables representing the start/end

times of the actions labeling the action nodes of A;

• C is a set of ordering constraints, duration constraints and schedul-

ing constraints involving variables in P.

Propositional flaw: unsupported precondition node

Temporal flaw : action unscheduled by T (〈P, C〉 is unsolvable)
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Example of TDA-graph
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C =


a+
1 ≺ a−3 , a+

2 ≺ a−3 , astart ≺ a−i , a+
i ≺ aend (i = 1 · · ·3)

a+
1 − a−1 = 50, a+

2 − a−2 = 70, a+
3 − a−3 = 15

Wp = {[25,50), [75,125)} ⇒ a3 during [25,50] or [75,125]
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Temporal values in a TDA-graph

• The DTP D = 〈P, C〉 of a TDA-graph 〈A, T ,P, C〉 represents a

set of induced STPs

• Induced STP: satisfiable STP with all unary constraints of C
and one disjunct (time window) for each disjunctive constraint

• Optimal induced STP for aend: an induced STP with a so-

lution assigning to aend the minimum possible value

• Optimal schedule for D = T -values: ⇒ optimal solution of

an optimal induced STP for aend

Can be computed in polytime by a backtrack-free algoritm!
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Solving the DTP of a TDA-graph

Finding a solution for a DTP ⇒ solving a meta CSP:

[Stergiou & Koubarakis, Tsamardinos & Pollack, and others]

• Meta variables: constraints of the DTP

• Meta variable values: constraint disjuncts

• Implicit meta constraint: the values (constraint disjuncts) of the

meta variables form a satisfiable STP

Solution of the meta CSP = complete induced STP of the DTP

In general NP-hard, but polynomial for the DTP of a TDA-graph:

Theorem : Given the DTP D of a TDA-graph, deciding satisfia-

bility of D and finding an optimal schedule for D (if one exists) can

be accomplished in polynomial time.
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Solving the DTP of a TDA-Graph
[Stergiou & Koubarakis ’00, Tsamardinos & Pollack ’03]

Solve-DTP(X,S)
1. if X = ∅ then stop and return S;

2. x← SelectVariable(X) ; X ′ ← X − {x};
3. while D(x) 6= ∅ do

4. d← SelectValue(D(x)) ; D(x)← D(x)− {d};
5. D′(x)← D(x);
6. if ForwardChecking-DTP(X ′, S) then Solve-DTP(X ′, S ∪ {d});
7. D(x)← D′(x);
8. return fail; /* backtracking */

ForwardChecking-DTP(X,S)
1. forall x ∈ X do
2. forall d ∈ D(x) do
3. if not Consistency-STP(S ∪ d) then D(x)← D(x)− {d};
4. if D(x) = ∅ then return false;
5. return true.

SelectV ariable: variables ordered w.r.t. the levels of the TDA-graph

SelectV alue: values ordered w.r.t. the windows in the constraint

⇒ No backtracking + Optimality of the induced STP!
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Planning with TDA-Graphs

Initial state: TDA-graph containing only astart (initial state),

aend (problem goals) + no-ops

Goal states: TDA-graphs without flaws (solution TDA-graph)

Basic search steps: graph changes for repairing a flaw σ at a level `

• Inserting an action node at a level `′ < ` (for propositional flaws)

• Removing an action node:

– at a level `′ ≤ ` (if σ is a propositional flaw), or

– an action at `′ < ` decreasing the earliest start time of σ

(if σ is a temporal flaw = unscheduled action node).

The DTP of the TDA-graph is dynamically updated at each search step
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Example: TDA-graph before Action Insertion
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Selected flawed level (propositional flaw: p6)
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TDA-graph after Insertion of anew
new level
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New temporal variables/constraints: a+
new ≺ a−2 , Dur(anew) = 30, Win(anew)=[0,+∞]

In general: also constraints for mutex actions; actions can become unscheduled
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