II Pianificatore LPG

Local Search for Planning Graphs

http://zeus.ing.unibs.it/lpg

Graphplan [Blum & Furst '95]

- **Planning Graph** (PG): *Directed acyclic "leveled" graph* automatically constructed from the problem specification.
- Nodes represent *facts* (goals, preconds, effects) or *actions* (and *no-ops* = dummy actions propagating facts of previous levels)
- Edges connect action-nodes to precondition/effect nodes
- Levels correspond to *time steps* (points); each level and has a layer of fact-nodes and a layer of action-nodes.
- Mutual exclusion relations between action-nodes and fact nodes E.g., A *mutex* B because one deletes a precondition or effect of the other

Planning = finding a subgraph of the PG representing a valid plan

Example of Planning Graph

Action Graphs

An **action graph** (A-graph) of a planning graph G is a subgraph of G such that, if an action-node a is in A, then

- \bullet all the precondition-nodes/edges of a are in ${\cal A}$
- \bullet all the effect-nodes and add-edges of a are in ${\cal A}$

Inconsistency in an action graph \mathcal{A} :

- \bullet a pair of action-nodes in ${\cal A}$ that are "mutex"
- \bullet an action-node in ${\mathcal A}$ with an unsupported precondition-node

Linear Action Graph (LA-graph)

- Linearity: in each action layer *one* node representing an action plus no-ops (does *not* imply linear output plans)
- Ordering constraints Ω
 - from the causal structure: if a is used for a precondition of b, then $a^+ \prec b^- \in \Omega$
 - to order mutex actions: if a and b are mutex, then $a^+ \prec b^- \in \Omega$ or $b^+ \prec a^- \in \Omega$
- Represented plan: actions in the graph ordered by Ω
 Correct plan if there is no flaw in the LA-graph (solution graph)
- Plan flaw: unsupported precondition-node of an action node

Example of Linear Action Graph

Plan actions: $\{a_1, a_2, a_2, a_3\}$

Plan flaw: unsupported precondition f_6 of a_4 (not executable)

Local Search in the Space of $\mathcal{A}\text{-}\textsc{Graphs}$

Search space: set of all the A-graphs of the planning graph (G)

Initial state: any A-graph of G, e.g.,

- random *A*-graph
- *A*-graph with supported precondition/goal nodes
- *A*-graph from a valid plan for a similar problem (**plan adaptation**)

Search steps: graph modifications to resolve an inconsistency:

- graph extensions (inserting one or more actions into A);
- graph reductions (removing one or more actions from A);
- graph replacements (replacing an action with another action).

Goal states: *A*-graphs with no inconsistency (**solution graphs**)

Graph extension: automatic when a search limit is exceeded

General Local Search Procedure

- 1. While \mathcal{A} is not a solution graph do
- 2. Choose an inconsistency (flaw) s in A;
- 3. Identify the neighborhood N(s, A) and weight its elements using a parametrized action evaluation function E;
- 4. Select an A-graph from N(s, A) and apply the corresponding graph modification to A.
- N(s, A): set of all the action graphs derivable from A by applying a graph modification resolving s.

Prefer flaws at the earliest graph level

Stochastic Search: Walkplan

Similar to the heuristic in Walksat [Selman et al.]

The A-graph selected from N(s, A) is:

- with probability p a graph in N(s, A) randomly chosen;
- with probability 1-p the **best** graph in N(s, A) according to E.

Action evaluation function

$$E: \begin{cases} E(a,A)^{insertion} = \alpha^{i} \cdot pre(a,A) + \beta^{i} \cdot |Threats(a,A)| \\ E(a,A)^{removal} = \gamma^{r} \cdot unsup(a,A) \end{cases}$$

 $pre(a, \mathcal{A})$: number of unsupported preconditions/goals of a $unsup(a, \mathcal{A})$: num. of supported preconditions becoming unsupported by adding a $Threats(a, \mathcal{A}) =$ supported preconditions becoming unsupported by adding ato \mathcal{A} .

Effect Propagation

- An action effect *f* can be **propagated** to preconditions of the next actions, unless there is another action interfering with *f*.
- If an action *a* interferes with *f*, the propagation is **blocked** at the time step *t* of *a*. When *a* is removed, *f* is propagated from *t*.
- Propagation performed using the "no-ops" of the planning graph.

 \Rightarrow Stronger search steps One graph modification (search step) can remove more than one inconsistency <u>at different levels</u>.

 \Rightarrow Extended neighborhood: a precondition can be supported by inserting an action at any previous level (time step).

Heuristic Evaluation based on Relaxed Plans: E_{π}

$$E_{\pi}(a,\mathcal{A})^{i} = |\pi(a,\mathcal{A})^{i}| + \sum_{a' \in \pi(a,\mathcal{A})^{i}} |Threats(a',\mathcal{A})|$$

$$E_{\pi}(a,\mathcal{A})^{r} = |\pi(a,\mathcal{A})^{r}| + \sum_{a' \in \pi(a,\mathcal{A})^{r}} |Threats(a',\mathcal{A})|$$

where

- $\pi(a, \mathcal{A})^i$ is an estimate of a minimal set of actions forming a relaxed plan achieving Pre(a) and $Threats(a, \mathcal{A})$;
- $\pi(a, \mathcal{A})^r$ is an estimate of a minimal set of actions forming a relaxed plan achieving $Unsup(a, \mathcal{A})$.

Relaxation: negative effects are ignored

Example of the Relaxed Plan

33

RelaxedPlan(G, I(l), A)

Input: A set of goal facts (G), the set of facts that are true after executing the actions of the current LA-graph up to level l(I(l)), a possibly empty set of actions (A);

Output: An estimated minimal set of actions required to achieve G.

1.
$$G \leftarrow G - I(l)$$
; $Acts \leftarrow A$;
2. $F \leftarrow \bigcup_{a \in Acts} Add(a)$;
3. while $G - F \neq \emptyset$
4. $g \leftarrow a$ fact in $G - F$;
5. $bestact \leftarrow Bestaction(g)$;
6. $Rplan \leftarrow RelaxedPlan(Pre(bestact), I(l), Acts)$;
7. $Acts \leftarrow Rplan \cup \{bestact\};$
8. $F \leftarrow \bigcup_{a \in Acts} Add(a)$;
9. return $Acts$.

$$Bestaction(g) = ARGMIN_{\{a' \in A_g\}} \left\{ MAX_{p \in Pre(a') - F} Num_acts(p, l) + |Threats(a')| \right\},\$$

where F is the set of positive effects of the actions currently in *Acts*, and A_g is the set of actions with the effect g and with all preconditions reachable from the initial state.

Relaxed Plan Construction (example)

Simulation of plan generation using InLPG

Performance di LPG

- Attualmente uno dei pianificatori piú espressivivi
- Attualmente uno dei migliori pianificatori in termi di qualitá dei piani
- Ma anche uno dei piú veloci:
 - Nel 2002 ha vinto la international planning competition (IPC)
 - Nel 2004 ha vinto il secondo posto nella IPC

Experimental Results: Computing a Plan

Planning	LPG	Blackbox		GP-	IPP	STAN
problem	Wplan	Wsat	Chaff	CSP		
rocket-a	0.05	1.25	5.99	1.55	20.2	6.49
rocket-b	0.06	1.51	6.16	3.02	38.83	4.24
log-a	0.22	3.21	5.93	1.60	777.8	0.24
log-b	0.28	5.76	6.74	22.7	341.0	1.11
log-c	0.32	14.28	7.19	28.8		896.6
log-d	0.42	35.10	11.5	98.0		
bw-large-a	0.24	2.06	0.69	6.82	0.17	0.21
bw-large-b	0.61	131.0	51.6	783	12.39	5.4
TSP-7	0.02	0.14	0.11	0.13	0.04	0.01
TSP-10	0.03	0.72	6.47	8.48	1.96	0.04
TSP-15	0.07	31.23			419.0	0.26
TSP-30	0.39	out				11.9
gripper10	0.31				40.38	36.3
gripper12	0.74				330.1	810.2

"—" means > 1,500; *out* means out of memory (768 Mbytes)

LPG is up to 4 orders of magnitude faster

Temporal Action Graphs

Temporal Action Graph (TA-graph): a triple $\langle \mathcal{A}, \mathcal{T}, \Omega \rangle$ such that

- A: A-graph with only one action-node per level (+ "no-ops")
- \mathcal{T} : assignment of real values to the fact and action nodes of $\mathcal A$
- Ω : set of ordering constraints between action nodes of $\mathcal A$

Inconsistencies in TA-graphs:

• action-nodes with an unsupported precondition node

No-ops propagation [AIPS-02]:

- *No-ops* nodes used to *propagate effect nodes of actions in* A to the next levels
- No-op propagation blocked by action nodes that are mutex with the no-op

TA-Graphs: Temporal Values and Ordering Constraints

Assumption (in the talk): preconditions Overall and effects at end

T-values of action and fact nodes (Time(x)):

- Time(f) = minimum over the time values of the action-nodes supporting f
- Time(a) = duration of a + maximum over time values of its preconditions and times of actions preceding a according to Ω
- **Two types of** Ω -constraints (\prec_C and \prec_E):
 - $a \prec_C b \in \Omega$ if an effect of a is used to achieve a precondition of b
 - $a \prec_E b \in \Omega$ if a and b are mutually exclusive and Level(a) < Level(b)

Plan action start times derived from the *Time*-values (\sim parallelism)

Example of TA-Graph

Local Search in the Space of TA-Graphs

Initial state: TA-graph containing only a_{start} , a_{end} (+ no-ops)

Search steps: graph changes removing an inconsistency σ at level *l*:

- Inserting an action node at a level l' preceding l
 - \Rightarrow TA-graph extended by one level (all actions from l' shifted forward)
- Removing the action node a responsible of σ
 - \Rightarrow Action nodes used only to support the preconds of a are removed as well

Goal states (solution TA-graphs): TA-graphs $\langle \mathcal{A}, \mathcal{T}, \Omega \rangle$ where

- \mathcal{A} is a solution graph
- ${\mathcal T}$ is consistent with Ω and the duration of the actions in ${\mathcal A}$
- Ω is consistent, and if a and b are mutex, $\Omega \models a \prec b$ or $\Omega \models b \prec a$.

Maintaining Temporal Information During Search

When an action node a is **added** to support a precondition of b:

- $\Omega = \Omega \cup \{a \prec b\}$
- $\forall c \ mutex(a,c) \& \ Level(a) < Level(c): \ \left| \Omega = \Omega \cup \{a \prec c\} \right|$
- $\forall d \ mutex(a,d) \& \ Level(d) < Level(a): \ \boxed{\Omega = \Omega \cup \{d \prec d\}}$
- \forall action/fact node x "temporally influenced" by a: Time(x) is updated

When an action node a with unsupported precondition is **removed**:

- \forall ordering constraint ω involving a: $\Omega = \Omega \{\omega\}$
- \forall action/fact node x "temporally influenced" by a: Time(x) is updated
- \Rightarrow The computation of Time(x) takes account of different types of preconditions (overall, at start, at end) and effects (at start, at end).

Example of Action Insertion (original graph)

TA-graph after Insertion of *a*₅

 $a_5 =$ new action to support f_6

 $\Omega = \{a_1 \prec_C a_4, \ a_2 \prec_C a_3, \boxed{a_5 \prec_C a_4}\} \ \cup \ \{a_1 \prec_E a_2, \ a_2 \prec_E a_4\}$

Action Evaluation Function (E)

Estimates the cost of inserting a ($E(a)^i$) or removing a ($E(a)^r$):

 $E(a)^{i} = \alpha \cdot Exec_cost(a)^{i} + \beta \cdot Temporal_cost(a)^{i} + \gamma \cdot Search_cost(a)^{i}$

 $E(a)^{r} = \alpha \cdot Exec_cost(a)^{r} + \beta \cdot Temporal_cost(a)^{r} + \gamma \cdot Search_cost(a)^{r}$

The three terms of E estimate the

- increase of the plan execution cost: *Exec_cost*
- end time of a: Temporal_cost
- increase of # of the search steps to reach a solution: $Search_cost$

 α , β and γ normalize the terms and weight their relative importance (*dynamically computed* during search – see paper)

Relaxed Plans for $E(a)^i$ (basic idea)

- Compute a relaxed plan π (no action interference) for
 - (1) the unsupported preconds of a and
 - (2) the preconds of actions "threatened by a" at the next levels $\boxed{a \text{ threatens } p} = p \text{ is supported and an effect of } a \text{ denies } p$

 $\Rightarrow Search_cost(a) = \# \text{ of actions in } \pi + \# \text{ of their threats}$ $Temporal_cost(a) = \text{end time of subplan for (1) + duration of } a$ $Execution_cost(a) = \text{sum of the costs of the actions in } \pi$

- π constructed in the context of the current TA-graph A:
 - actions in ${\cal A}$ at preceding levels define the <code>initial state</code> for π
 - actions for π threatening other actions in ${\mathcal A}$ are penalized

Relaxed Plans for $E(a)^i$ (basic idea, cont.)

 π constructed by a **backward process** from Preconds(a) and Threats(a)

 $|INIT_l| =$ state reached by the actions preceding the level l of a

b is the **best action** to achieve a (sub)goal g in π if

(1) g is an effect of b, and all preconds of b reachable from $INIT_l$

- (2) satisfying the preconds of b from $INIT_l$ requires a min number of actions
- (3) b threatens a min number of preconds of actions in the TA-graph \downarrow

 $\frac{\mathbf{v}}{BestAction(g)} = ARGMIN \left\{ MAX_{p \in Pre(b') - F} Num_acts(p, l) + |Threats(b')| \right\}$ $(F = \text{preconds already achieved in } \pi)$

 $\boxed{Num_acts(p,l)} = estimate of minimum number of actions required to achieve p from INIT_l (dynamically computed).}$

Relaxed Plan for $E(a)^i$ (example)

RelaxedPlan(G, $INIT_l$, A**)**

1.
$$t \leftarrow MAX \ Time(g);$$

2. $G \leftarrow G - INIT_l; \ ACTS \leftarrow A;$
3. $F \leftarrow \bigcup_{a \in ACTS} Add(a);$
4. $t \leftarrow MAX \left\{ t, MAX \ T(g) \right\};$
5. while $G - F \neq \emptyset$
6. $g \leftarrow a \ fact \ in \ G - F;$
7. $bestact \leftarrow Bestaction(g);$
8. $Rplan \leftarrow Relaxed Plan(Pre(bestact), INIT_l, ACTS);$
9. $\mathbf{forall} \ f \in Add(bestact) - F$
10. $T(f) \leftarrow End_time(Rplan) + Duration(bestact);$
11. $ACTS \leftarrow Aset(Rplan) \cup \{bestact\};$
12. $F \leftarrow \bigcup_{a \in ACTS} Add(a);$
13. $t \leftarrow MAX\{t, End_time(Rplan) + Duration(bestact)\};$
14. $\mathbf{return} \ \langle ACTS, t \rangle.$

- 1. $INIT_l \leftarrow Supported_facts(Level(a));$
- 2. $Rplan \leftarrow \text{RelaxedPlan}(Pre(a), INIT_l, \emptyset);$
- 3. $t_1 \leftarrow MAX\{0, MAX\{Time(a') \mid \Omega \models a' \prec a\}\};$
- 4. $t_2 \leftarrow MAX\{t_1, End_time(Rplan)\};$
- 5. $A \leftarrow Aset(Rplan) \cup \{a\};$
- 6. $Rplan \leftarrow \mathsf{RelaxedPlan}(Threats(a), INIT_l Threats(a), A);$
- 7. **return** $\langle Aset(Rplan), t_2 + Duration(a) \rangle$.

$$E(a)^{i} \begin{cases} Execution_cost(a)^{i} = \sum_{a' \in Aset(EvalAdd(a))} Cost(a') \\ Temporal_cost(a)^{i} = End_time(EvalAdd(a)) \\ Search_cost(a)^{i} = |Aset(EvalAdd(a))| + \\ \sum_{a' \in Aset(EvalAdd(a))} |Threats(a')| \end{cases}$$

Experimental Results (All IPC 2004 Planners)

LPG data are median values over five runs Plan quality: minimization of a metric expression CPU-time: milliseconds in logarithmic scale

Incremental Plan Quality

- Generation of a *sequence* of valid plans.
- Each plan improves the quality of the previous one.

 $\pi_0 = \text{initial } \mathcal{A}\text{-graph}$

 π_1 = first valid plan computed by LPG

 π_i = i-th valid plan (of quality better than π_{i-1})

- Each computed plan (*with some forced inconsistencies*) becomes the initial *A*-graph of a new search.
- \Rightarrow **Anytime process**: the system can be stopped at any time to give the best plan computed so far.

Experimental Results: Plan Quality

33

Incremental Plan Quality: TSP

Incremental Plan Quality: Logistics

Incremental Plan Quality

Incremental Plan Quality with InLPG (demo)

Timed Literals & Exogenous Events

• Useful to represent **predictable exogenous events** that happen at known times, and cannot be influenced by the planning agent.

For instance (using PDDL notation):

(at 8 (open-fuelstation city1))
(at 12 (not (open-fuelstation city1)))
(at 15 (open-fuelstation city1))
(at 19 (not (open-fuelstation city1)))

• Timed literals in the preconditions of an action impose **scheduling constraints** to the action:

If (refuel car city1) has over all condition open-fuelstation, it must be executed during the time window [8,12] or [15,19]. (Similarly for other types of action conditions)

DTP Constraints for PDDL2.2 Domains

• Action ordering constraints

E.g., a must end (a⁺) before the start of b (b⁻): $a^+ \prec b^$ $a^+ \prec b^- \equiv a^+ - b^- \leq 0$

• Duration Constraints

E.g.,
$$(a^+ - a^- \le 10) \land (a^- - a^+ \le -10))$$

• Scheduling constraints (in *compact* DTP-form):

$$\bigvee_{w \in W(p)} \left(\left(a_{start} - a^{-} \leq -w^{-} \right) \land \left(a^{+} - a_{start} \leq w^{+} \right) \right).$$

If p over all timed condition with windows $W(p) = \{w_1, \ldots, w_n\}$ $(a_{start} \text{ is a special instantaneous action preceding all others})$

Note: we can compile all timed conditions of an action into a single **over all** timed precondition (with more time windows)

Temporally Disjunctive LA-graph

A Temporally Disjunctive Action Graph (TDA-graph) is a 4-tuple $\langle \mathcal{A}, \mathcal{T}, \mathcal{P}, \mathcal{C} \rangle$ where

- \mathcal{A} is a linear action graph;
- \mathcal{T} is an assignment of real values to the nodes of \mathcal{A} (determined by solving the DTP $\langle \mathcal{P}, \mathcal{C} \rangle$)
- \mathcal{P} is the set of time point variables representing the start/end times of the actions labeling the action nodes of \mathcal{A} ;
- C is a set of ordering constraints, duration constraints and scheduling constraints involving variables in \mathcal{P} .

Propositional flaw: unsupported precondition node

Temporal flaw : action *un*scheduled by \mathcal{T} ($\langle \mathcal{P}, \mathcal{C} \rangle$ is unsolvable)

Example of TDA-graph

15

Temporal values in a TDA-graph

- The DTP $\mathcal{D} = \langle \mathcal{P}, \mathcal{C} \rangle$ of a TDA-graph $\langle \mathcal{A}, \mathcal{T}, \mathcal{P}, \mathcal{C} \rangle$ represents a set of *induced STPs*
- **Induced STP**: satisfiable STP with all unary constraints of C and one disjunct (time window) for each disjunctive constraint
- Optimal induced STP for a_{end} : an induced STP with a solution assigning to a_{end} the minimum possible value
- Optimal schedule for $\mathcal{D} = \mathcal{T}$ -values: \Rightarrow optimal solution of an optimal induced STP for a_{end}

Can be computed in polytime by a backtrack-free algoritm!

Solving the DTP of a TDA-graph

Finding a solution for a DTP \Rightarrow solving a meta CSP: [Stergiou & Koubarakis, Tsamardinos & Pollack, and others]

- *Meta variables*: constraints of the DTP
- Meta variable values: constraint disjuncts
- *Implicit meta constraint*: the values (constraint disjuncts) of the meta variables form a satisfiable STP

Solution of the meta CSP = complete induced STP of the DTP

In general NP-hard, but polynomial for the DTP of a TDA-graph:

Theorem: Given the DTP \mathcal{D} of a TDA-graph, deciding satisfiability of \mathcal{D} and finding an optimal schedule for \mathcal{D} (if one exists) can be accomplished in polynomial time.

Solving the DTP of a TDA-Graph

[Stergiou & Koubarakis '00, Tsamardinos & Pollack '03]

```
Solve-DTP(X, S)
     if X = \emptyset then stop and return S;
1.
     x \leftarrow \text{SelectVariable}(X); X' \leftarrow X - \{x\};
2.
    while D(x) \neq \emptyset do
3.
4. d \leftarrow \text{SelectValue}(D(x)); D(x) \leftarrow D(x) - \{d\};
5. D'(x) \leftarrow D(x);
6. if ForwardChecking-DTP(X', S) then Solve-DTP(X', S \cup \{d\});
7. D(x) \leftarrow D'(x);
     return fail; /* backtracking */
8.
ForwardChecking-DTP(X, S)
     forall x \in X do
1.
2.
         forall d \in D(x) do
3.
            if not Consistency-STP(S \cup d) then D(x) \leftarrow D(x) - \{d\};
            if D(x) = \emptyset then return false;
4.
5.
     return true.
```

SelectVariable: variables ordered w.r.t. the levels of the TDA-graph SelectValue: values ordered w.r.t. the windows in the constraint

 \Rightarrow No backtracking + Optimality of the induced STP!

Planning with TDA-Graphs

Initial state: TDA-graph containing only a_{start} (initial state), a_{end} (problem goals) + no-ops

Goal states: TDA-graphs without flaws (*solution TDA-graph*)

Basic search steps: graph changes for repairing a flaw σ at a level ℓ

- Inserting an action node at a level $\ell' < \ell$ (for propositional flaws)
- *Removing an action node*:
 - at a level $\ell' \leq \ell$ (if σ is a propositional flaw), or
 - an action at $\ell' < \ell$ decreasing the earliest start time of σ (if σ is a temporal flaw = unscheduled action node).

The DTP of the TDA-graph is **dynamically updated** at each search step

Example: TDA-graph before Action Insertion

TDA-graph after Insertion of a_{new}

New temporal variables/constraints: $a_{new}^+ \prec a_2^-$, $\text{Dur}(a_{new}) = 30$, $Win(a_{new}) = [0, +\infty]$ In general: also constraints for mutex actions; actions can become unscheduled