Il Pianificatore LPG

[L.ocal Search for Planning Graphs

http://zeus.ing.unibs.it/1lpg

Graphplan [Blum & Furst '95]

e Planning Graph (PG): Directed acyclic “leveled” graph auto-
matically constructed from the problem specification.

e Nodes represent facts (goals, preconds, effects) or actions (and
no-ops = dummy actions propagating facts of previous levels)

e Edges connect action-nodes to precondition/effect nodes

e Levels correspond to time steps (points); each level and has a
layer of fact-nodes and a layer of action-nodes.

e Mutual exclusion relations between action-nodes and fact nodes
E.g., A mutex B because one deletes a precondition or effect of
the other

Planning = finding a subgraph of the PG representing
a valid plan

Example of Planning Graph

Level 0 |on-table(b) | clear(b) arm_empty clear(c) on(c,a) on-table(e)| - Operators
pickup(?0)

stack(?0, ?under_o)
P S unstack(?o, 2under_o)
- putdown(?0)

time

Level 1 | holding(b | holdi lear(b » T pickup(?0)
eve olding(clear(a) olding(c) clear(b) clear(c) arm_empty - orecon ditions:

clear(?0)

ontable(?0)

arm_empty
effects:

, T holding(?0)

(goal state) | clear(a) arm_empty | on(c,b) clear(c) clear(b) | | holding(b)| not(arm_empty)
not(ontable(?0))
not(clear(?0))

Goal level

Initial: ~ on-table(a) on-table(b) on(c,a) Goal: clear(a) arm—-empty
clear(c) clear(b) arm-empty on(c,b) clear(c)

T T

Action Graphs

An action graph (A-graph) of a planning graph G is a subgraph of
G such that, if an action-node a is in A, then

e all the precondition-nodes/edges of a are in A

e all the effect-nodes and add-edges of a are in A

| clear(c)l Ion(c,a) | lon-table(a)‘

Time

Goals ’clear(a) ‘ Iarm_emptyl Ion(c,b) | Iclear(c) | ’clear(b) ‘

Inconsistency in an action graph A:
e a pair of action-nodes in A that are “mutex”
e an action-node in A with an unsupported precondition-node

4

Linear Action Graph (LA-graph)

Linearity: in each action layer one node representing an action
plus no-ops (does not imply linear output plans)

Ordering constraints 2

— from the causal structure:
if a is used for a precondition of b, then at <b— c Q

— to order mutex actions:
if @ and b are mutex, thenat <b~cQorbt <a €

Represented plan: actions in the graph ordered by €2
Correct plan if there is no flaw in the LA-graph (solution graph)

Plan flaw: unsupported precondition-node of an action node

Example of Linear Action Graph

| | | |
Level 1 1 Level 2 1 Level 3 1 Level 4 1

/5

f4

INI'T

Plan actions: {al,ag,ag,a3}

Plan flaw: unsupported precondition fg of as (not executable)

21

Local Search in the Space of A-Graphs

Search space: set of all the A-graphs of the planning graph (G)

Initial state: any A-graph of G, e.qg.,

e random A-graph
e A-graph with supported precondition/goal nodes

e A-graph from a valid plan for a similar problem (plan adaptation)

Search steps: graph modifications to resolve an inconsistency:
e graph extensions (inserting one or more actions into A);
e graph reductions (removing one or more actions from A);

e graph replacements (replacing an action with another action).

Goal states: A-graphs with no inconsistency (solution graphs)

Graph extension: automatic when a search limit is exceeded
.

General Local Search Procedure

1. While A is not a solution graph do
2. Choose an inconsistency (flaw) s in A,

3. Identify the neighborhood N (s, A) and weight its elements
using a parametrized action evaluation function E;

4. Select an A-graph from N (s, A) and apply the corresponding
graph modification to A.

N(s, A): set of all the action graphs derivable from A by applying
a graph modification resolving s.

Prefer flaws at the earliest graph level

Stochastic Search: Walkplan
Similar to the heuristic in Walksat [Selman et al.]

The A-graph selected from N(s, A) is:
e with probability p a graph in N(s, A) randomly chosen;

e with probability 1 —p the best graph in N(s, A) according to E.

Action evaluation function

oy E(a, A)msertion — ot . pre(a, A) + 3 - |Threats(a, A)|
" E(a, A)removal — A ynsup(a, A)

pre(a, .A): number of unsupported preconditions/goals of a
unsup(a, .A): num. of supported preconditions becoming unsupported by adding a

Th?“eats(a, .A) — supported preconditions becoming unsupported by adding a
to A.

9

Effect Propagation

e An action effect f can be propagated to preconditions of the
next actions, unless there is another action interfering with f.

e If an action a interferes with f, the propagation is blocked at
the time step t of a. When a is removed, f is propagated from t.

e Propagation performed using the “no-ops” of the planning graph.

—> Stronger search steps One graph modification (search step)
can remove more than one inconsistency at different levels.

—> Extended neighborhood: a precondition can be supported by
inserting an action at any previous level (time step).

10

Heuristic Evaluation based on Relaxed Plans: E;
Er(a, A)' = |n(a, A" + > dlen(a,A)i | Threats(a’, A)|
Ex(a, A)" = |n(a, A)"| + > a'en(a,A) | Threats(a’, A)]

where

e 7(a, A)" is an estimate of a minimal set of actions forming a
relaxed plan achieving Pre(a) and Threats(a, A);

e w(a, A)" is an estimate of a minimal set of actions forming a
relaxed plan achieving Unsup(a, A).

Relaxation: negative effects are ignored

11

Example of the Relaxed Plan

(90)

(90)

(70) Relaxed Plan =«

(35)
\\.(m) (70)
A

O gmis 0oL a0 I
(75) L% (30)
< >
20)
('%X (70) (70) 70 () /\,“\\\(30)
gl a2
777777777777777777777777777777777 ‘ 4
"not(ql) [10]
o/ APX (20)
| “H
AL (0)
93 s
' .
oy [20]
(0) /
o

[A sl Al

33

RelaxedPlan(G, I(1), A)

Input: A set of goal facts (G), the set of facts that are true after executing
the actions of the current LA-graph up to level I (I(l)), a possibly empty set of
actions (A);

Output: An estimated minimal set of actions required to achieve G.

G «—G—1I(l); Acts «— A;
F— UacActs Add(a);
while G — F # {
g «— a fact in G — F}
bestact «+— Bestaction(g);
Rplan <« RelaxedPlan(Pre(bestact), I(l), Acts);
Acts <+ Rplan U {bestact};

F UaEActs Add(a);
return Acts.

CONOOOUA~WNE=

Bestaction =ARGMIN MAX Num_acts(p,l Threats(a')] 7,
() =argyIn { arax (.1 + (Threats(a) |

where F' is the set of positive effects of the actions currently in Acts, and A, is
the set of actions with the effect g and with all preconditions reachable from the
initial state.

13

Relaxed Plan Construction (example)

Fact

P1
p2
p3
p5
P10
P12
Fact

Num_acts
level I 4+ 1 ’

Unsupported
preco%%ition @

NFEFORFRDNN

Trme

P4
Pe6
p7
ps
y4e)
P11

170
300
50
30
170
30

Action

Duration

a 30 az.
ai 70 L R U DR P
as 100

2| 2| 99999 iy

Relaxed plan =

{a1,a3,aa} U {ae} End_time({a1,a3,as}) = 240

14

Simulation of plan generation using InLPG

15

Performance di LPG

e Attualmente uno dei pianificatori piu espressivivi

e Attualmente uno dei migliori pianificatori in termi di qualita dei
piani

e Ma anche uno dei piu veloci:

— Nel 2002 ha vinto la international planning competition (IPC)

— Nel 2004 ha vinto il secondo posto nella IPC

16

Experimental Results: Computing a Plan

Planning LPG Blackbox GP- 1IPP STAN
problem Wplan | Wsat Chaff | CSP

rocket-a 0.05 1.25 5.99 1.55 20.2 ©6.49
rocket-b 0.06 1.51 6.16 3.02 38.83 | 4.24
log-a 0.22 |3.21 5.93 1.60 | 777.8 |0.24
log-b 0.28 |b.76 6.74 22.7 [1341.0 |1.11
log-c 0.32 14.28 7.19 28.8 | — 396.6
log-d 0.42 | 35.10 11.5 98.0 | — —
bw-large-a 0.24 | 2.06 0.69 6.82 0.17 0.21
bw-large-b 0.61 131.0 51.6 783 12.39 | 5.4
TSP-7 0.02 |0.14 0.11 0.13 0.04 0.01
TSP-10 0.03 | 0.72 ©6.47 8.48 1.96 0.04
TSP-15 0.07 | 31.23 — — 419.0 | 0.26
TSP-30 0.39 out — — — 11.9
gripper10 0.31 | — — — 40.38 | 36.3
gripperil?2 0.74 | — — — 330.1 | 810.2

' means > 1,500; out means out of memory (768 Mbytes)

LPG is up to 4 orders of magnitude faster

17

Temporal Action Graphs

Temporal Action Graph (TA-graph): a triple (A,7,Q) such that
e A: A-graph with only one action-node per level (4 “no-ops")
e 7: assignment of real values to the fact and action nodes of A

e (2: set of ordering constraints between action nodes of A

Inconsistencies in TA-graphs:
e action-nodes with an unsupported precondition node

No-ops propagation [AIPS-02]:
e No-ops nodes used to propagate effect nodes of actions in A to
the next levels
e No-op propagation blocked by action nodes that are mutex with
the no-op

18

TA-Graphs: Temporal VValues and
Ordering Constraints

Assumption (in the talk): preconditions overall and effects at end

T-values of action and fact nodes (Time(x)):

e Time(f) = minimum over the time values of the action-nodes supporting f
e Time(a) = duration of a + maximum over time values of its preconditions

and times of actions preceding a according to 2

Two types of Q2-constraints (< and <g):

e a <~ be& 2 ifan effect of a is used to achieve a precondition of b

e a <pbe2 ifa and b are mutually exclusive and Level(a) < Level(b)

Plan action start times derived from the Time-values (~ parallelism)
19

Example of TA-Graph

Q = {a1 <¢c aa, ax <c a3z} U {a1 <gap, ax <gas}

Causal precedence Exclusion precedence

20

Local Search in the Space of TA-Graphs

Initial state: TA-graph containing only agstart, Gepng (4 NO-0PS)

Search steps: graph changes removing an inconsistency o at level {:

e Inserting an action node at a level I’ preceding I

= TA-graph extended by one level (all actions from [’ shifted forward)

e Removing the action node a responsible of o

—> Action nodes used only to support the preconds of a are removed as well

Goal states (solution TA-graphs): TA-graphs (A, 7,Q) where

e A is a solution graph

e 7 is consistent with €2 and the duration of the actions in A

e (2 is consistent, and if a and b are mutex, €2 =a < b or 2

— b < a.

21

Maintaining Temporal Information
During Search

When an action node a is added to support a precondition of b:

e 2=0QU{a< b}
V¢ mutex(a,c) & Level(a) < Level(c): |2 = QU {a < ¢}

Vd mutex(a,d) & Level(d) < Level(a): |2 = QU {d < d}

e V action/fact node & “temporally influenced” by a: |Time(x) is updated

When an action node a with unsupported precondition is removed:

e V ordering constraint w involving a: |2 = Q2 — {w}

e V action/fact node x “temporally influenced” by a: | Time(x) is updated

—> The computation of Time(x) takes account of different types of preconditions
(overall, atstart, atend) and effects (at start, atend).

22

Example of Action Insertion
(original graph)

Q ={a1 <¢ aa, az <¢ a3z} U {a1 <gaz, az <g aa}
Causal precedence Exclusion precedence

23

/3

Ja

~—~

—~

&

TA-graph after Insertion of asg

Level 2

o

0

INIT

as = new action to support fg

Q = {a1 <¢ a4, as <¢ a3z, |as5 <¢ ag

T new action and level

} U {a1 <gag, ap <pas}

24

Action Evaluation Function (F)

Estimates the cost of inserting a (E(a)*) or removing a (E(a)"):

E(a)" = a-Exec_cost(a)' 4 B-Temporal _cost(a)’ 4~ - Search_cost(a)’

FE(a)" = a-FExec_cost(a)”+ 6-Temporal_cost(a)” +~-Search_cost(a)”

The three terms of E estimate the

e /ncrease of the plan execution cost: | Exec_cost

e end time of a: |Temporal_cost

e increase of # of the search steps to reach a solution:

Search_cost

«, 3 and v normalize the terms and weight their relative importance
(dynamically computed during search — see paper)

25

Relaxed Plans for E(a)' (basic idea)

e Compute a relaxed plan 7T (no action interference) for

(1) the unsupported preconds of a and

(2) the preconds of actions “threatened by a" at the next levels

a threatens p| = p is supported and an effect of a denies p

— Search_cost(a) = # of actions in 7 + # of their threats
Temporal_cost(a) = end time of subplan for (1) + duration of a

FExecution_cost(a) = sum of the costs of the actions in 77

e 7T constructed in the context of the current TA-graph A:

— actions in A at preceding levels define the initial state for 7

— actions for m threatening other actions in A are penalized

26

Relaxed Plans for E(a)' (basic idea, cont.)

7t constructed by a backward process from Preconds(a) and Threats(a)

INI'T;| = state reached by the actions preceding the level [of a

b is the best action to achieve a (sub)goal g in 7 if

(1) g is an effect of b, and all preconds of b reachable from INIT;

(2) satisfying the preconds of b from INIT; requires a min number of actions

(3) b threatens a min number of preconds of actions in the TA-graph

U

BestAction(g)

Num_acts(p,1)

= ARGMIN MAX Num_acts(p,l Threats(b
oM {pePre(b’)—F um_acts(p,l) + |Threats()|}

(F = preconds already achieved in)

— estimate of minimum number of actions required
to achieve p from INIT; (dynamically computed).

27

Relaxed Plan for E(a)’ (example)

precondition

p1
p2
p3
pPs
p1o
pb12
Fact Time
pa 170 PO .
Pe 300 WA e
b7 50 ay ap as as~——r |14
ps 30 Oy ELAS f
| 50
Action | Duration
a 30 |
a1 70 o~
as 100 P

s s] REERR S

Fact Num_acts evel 14 1 ’ Unsupported @

NFEFORFRDNN

Relaxed plan = |{a1,a3,a4} U {ae} End_time({a1,a3,as}) = 240

28

RelaxedPlan(G,INIT;, A)

OO0 ~NOo o A Wb =

O g
Ww N = O

14.

t— MAX Time(g);
g€GNINIT]

G+—G—

INITy;; ACTS «+ A;

F «— UgeacTs Add(a),
t— MAX {t, MAX T(g)

geGNF }'

while G — F #= ()
g+« a factin G — F
bestact < Bestaction(g);
Rplan +— RelaxedPlan(Pre(bestact), INIT;, ACTS);
forall f € Add(bestact) — F

T(f) <« End_time(Rplan) + Duration(bestact);

ACTS « Aset(Rplan) U {bestact};

F «— Ugeacts Add(a);
t — MAXA{t, End_time(Rplan) + Duration(bestact)};

return

(ACTS, t).

29

EvalAdd(a)

INIT; «— Supported_facts(Level(a));

Rplan + RelaxedPlan(Pre(a), INIT},0);

t1 «— MAX{0, MAX{Time(d") | Q = d < a}};

to «— MAX{t1, End_time(Rplan)},

A «— Aset(Rplan) U{a};

Rplan « RelaxedPlan(Threats(a), INIT; — Threats(a), A);
return (Aset(Rplan),to> + Duration(a)).

NOoO O AN

(Ezecution_cost(a)’ = a'c Aset(EvalAdd(a)) Cost(a)

Temporal_cost(a)’ = End_time(EvalAdd(a))

Search_cost(a)’ = | Aset(EvalAdd(a))|+
>a'e Aset(EvalAdd(a)) |Threats(a’)|

E(a)"

30

Experimental Results
(All IPC 2004 Planners)

Milliseconds Satellite-Time Quality Satellite-Time
16+07 T T T T T T T T T 700 T T T T
—+— LPG-speed (20 solved) —+— LPG-quality (20 solved)
—-e-- MIPS (10 solved) ~—®— MIPS (10 solved)
——————— MIPS (Plan) (19 solved) « ——>-— MIPS (Plan) (19 solved)
---*--- Sapa (19 solved) « 600 b X Sapa (19 solved)
1e+06 | —© - TP4 (2 solved) *. A ~--@--- TP4 (2 solved)
P
i ; 500 - ¥
100000 o AN A ¥ : *
400
¢ 4
10000 [« * . b
300 |- -
1000 ;. o 7] .
A v 200 +
: -%4‘
Y) —
100 — 1
100
,,,,, : e
e —
4—0—4//
10 1 1 1 1 1 1 1 1 1 O
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18

LPG data are median values over five runs
Plan quality: minimization of a metric expression

CPU-time: milliseconds in logarithmic scale

31

Incremental Plan Quality

e (GGeneration of a sequence of valid plans.

e Each plan improves the quality of the previous one.

0 LPG T nl, 2, w3, ...
o = initial A-graph
701 = first valid plan computed by LPG
7r; = i-th valid plan (of quality better than m;_1)

e Each computed plan (with some forced inconsistencies) be-
comes the initial A-graph of a new search.

—> Anytime process: the system can be stopped at any time to

give the best plan computed so far.

32

Experimental Results: Plan Quality

0123456789 0123456789

Source

package 3. 5 Source package3

| S L S R N ' i R S A T

Citys1l . . \City9s Ciy81l T City_9_8

9l package R TR R \}y 9 package--4--------§ ------- R R e A NE
. package] S paCkage 1

= Airplanel Global cost = 4019 (b) = Airplanel Global cost = 2664
(a) — = Arplane2 0 T > Arplane2

33

0123456789

______ S ource package 3
T ewas

------- mm@%www$wﬁw9&iw¥w
: : : : : : package_1

(c) > Airplanel G|obal cost = 2369

— == > Arplane2

Incremental Plan Quality: TSP

650

600

550

500 |\

450 |7 \e

Plan cost for TSP 7

FF solution

400 | . |
350 .
300 .
Optimal cost
250 -] - e
0.1 1 10

CPU-SECONDS (log scale)

34

Incremental Plan Quality: Logistics

Plan cost for Logistics-b with connections

80000 — . : —— -

70000 _
\\v“i‘\\ 0

60000 | . o _

50000 [i b _
h Sl

40000 | s FF solution -
30000
20000

Optimal cost

0.1 1 10
CPU-SECONDS (log scale)

Incremental Plan Quality

Quality Satellite-Time-pfile6
260 - — - — - — - — - —
| | | LF;G (1strun, 11 soluti(l)ns found) —+—
240 j LPG (3rd run, 10 solutions found) & o
| LPG (5th run, 11 solutions found) ----e---
220 | _ SuperPlanner (2 solutions found) ---@---
200 ! ° =
180 |- 1 i
160 - i -
i o
140 | _
i BN
e |
120 g @» .
@ i e g
100 | R .
- . EL L
80 - 3 .
60 1 1 | 1 1 | 1 1 | 1 1 | 1 1 1
10 100 1000 10000 100000 1le+06

CPU Time

Incremental Plan Quality with InLPG
(demo)

36

Timed Literals & Exogenous Events

e Useful to represent predictable exogenous events that happen
at known times, and cannot be influenced by the planning agent.

For instance (using PDDL notation):

(at 8 (open-fuelstation cityl))
(at 12 (not (open-fuelstation cityl)))
(at 15 (open-fuelstation cityl))
(at 19 (not (open-fuelstation cityl)))

e [imed literals in the preconditions of an action impose
scheduling constraints to the action:

If (refuelcarcityl) has overall condition open-fuelstation,
it must be executed during the time window [8,12] or [15,19].

(Similarly for other types of action conditions)

DTP Constraints for PDDL2.2 Domains

e Action ordering constraints
E.g., a must end (a1) before the start of b (b7): at < b~
at <b"=at —-b~ <0

e Duration Constraints

E.g., (et —a= <10)A(a” —atT < —=10))

e Scheduling constraints (in compact DTP-form):
\/ ((astart —a < —’LU_) A (a_l_ — Qstart < w+>)-
weW (p)

If p overall timed condition with windows W (p) = {w1,...,wn}
(astqrt 1S @ Special instantaneous action preceding all others)

Note: we can compile all timed conditions of an action into a single over all
timed precondition (with more time windows)

Temporally Disjunctive LA-graph

A Temporally Disjunctive Action Graph (TDA-graph) is a
4-tuple (A,7,P,C) where

e A is a linear action graph;

e 7 is an assignment of real values to the nodes of A (determined
by solving the DTP (P,C))

e P is the set of time point variables representing the start/end
times of the actions labeling the action nodes of A;

e C is a set of ordering constraints, duration constraints and schedul-
ing constraints involving variables in P.

Propositional flaw: unsupported precondition node

Temporal flaw || action unscheduled by 7 ((P,C) is unsolvable)

14

7

\

Example of TDA-graph

| p

@ _ +

i /@0y (7o) (7 |

@ bl +pe Bl
| / | 0 25 50 75 90 125

©) (0)7 [7o). (70) (70) (70) (70)
p4 (0) @ p9p9

a1|_<a§, aj_<a§7 astart‘<a2-_, a,j<aend (1,:]_3)
CLT—CLI:50, CL;_—CLEZYO’ a;_a§:15

W, = {[25,50),[75,125)} = a3 during [25,50] or [75,125]

15

Temporal values in a TDA-graph

e The DTP D = (P,C) of a TDA-graph (A,7,P,C) represents a
set of induced STPs

e Induced STP: satisfiable STP with all unary constraints of C
and one disjunct (time window) for each disjunctive constraint

e Optimal induced STP for a.,,4: an induced STP with a so-
lution assigning to a.,4 the minimum possible value

e Optimal schedule for D = 7-values: —> optimal solution of
an optimal induced STP for agpng

25

Solving the DTP of a TDA-graph

Finding a solution for a DTP => solving a meta CSP:
[Stergiou & Koubarakis, Tsamardinos & Pollack, and others]

e Meta variables: constraints of the DTP
e Meta variable values: constraint disjuncts

e Implicit meta constraint. the values (constraint disjuncts) of the
meta variables form a satisfiable STP

Solution of the meta CSP = complete induced STP of the DTP
In general NP-hard, but polynomial for the DTP of a TDA-graph:

Theorem : Given the DTP D of a TDA-graph, deciding satisfia-
bility of D and finding an optimal schedule for D (if one exists) can
be accomplished in polynomial time.

17

Solving the DTP of a TDA-Graph
[Stergiou & Koubarakis '00, Tsamardinos & Pollack '03]

Solve-DTP(X,S5)
1. if X =) then stop and return S;

2. x < SelectVariable(X) ; X' — X — {z};

3. while D(z) # 0 do

4. d <+ SelectValue(D(z)) ; D(x) «— D(x) — {d};

5. D'(z) «— D(x);

6. iIf ForwardChecking-DTP(X’,S) then Solve-DTP(X',SU{d});
7. D(x) «+— D'(x);

8.

return fail; /* backtracking */

ForwardChecking-DTP(X, S)

1. forall x € X do

2. forall d € D(x) do

3 iIf not Consistency-STP(SUd) then D(x) «— D(x) — {d};
4 iIf D(z) = (then return false;

5 return true.

SelectVariable: variables ordered w.r.t. the levels of the TDA-graph
SelectValue: values ordered w.r.t. the windows in the constraint

—> No backtracking 4+ Optimality of the induced STP!
26

Planning with TDA-Graphs

Initial state: TDA-graph containing only astqr¢ (initial state),

Aend (Problem goals) 4+ no-ops
Goal states: TDA-graphs without flaws (solution TDA-graph)

Basic search steps: graph changes for repairing a flaw o at a level ¢

e Inserting an action node at a level ¢! < ¢ (for propositional flaws)

e Removing an action node:

— at a level ¢/ < ¢ (if o is a propositional flaw), or

— an action at ¢ < ¢ decreasing the earliest start time of o
(if o is a temporal flaw = unscheduled action node).

The DTP of the TDA-graph is dynamically updated at each search step
27

Example: TDA-graph before Action Insertion

(=)

(50) (50) (50)

(90)

fffffff

/ [15]
(75)
(70)

(70) (70) (7

e
\%/pSﬁPS

© (© 7 [go (70) (70) (70) (70)
p4 (0) @ p9 P9
T

Selected flawed level (propositional flaw: pg)

28

TDA-graph after Insertion of anew

new level

(50) (5

0) (50)

H ps

(50)

MV

/ "

[70] | (100) (100) (100)

(30)

(=)
P1

(50)

(115)

(100) (100)

—%+'p8

P9

(100)

j2e)

New temporal variables/constraints: a < a5, Dur(anew) = 30, Win(anew)=[0, 400]

In general: also constraints for mutex actions; actions can become unscheduled

29

