03 Establish datum point at bullseye (0.25, 1.00) 004 B VMC1 0.10 0.34 01 Install 0.15-diameter side-milling tool

> 02 Rough side-mill pocket at (-0.25, 1.25) length 0.40, width 0.30, depth 0.50

03 Finish side-mill pocket at (-0.25, 1.25)

May All Your Plans Succeed! (or have a high expected utility)

Dana S. Nau

MARYLAND

005 D EC1 30.00 20.00 01 Setup

02 Etching of copper 005 T EC1 90.00 54.77 01 Total time on EC1

 006 A
 MC1 30.00
 4.57 01 Setup 02 Prepare board for soldering

 006 B
 MC1 30.00
 0.29 01 Setup

 005 C
 MC1 30.00
 0.29 01 Setup

 006 C
 MC1 30.01 0.29 01 Setup
 0.20 01 Setup

UNIVERSITY OF MARYLAND

Image: Search search?q=plan Image: Search search search?q=plan Image: Search se

plan n.

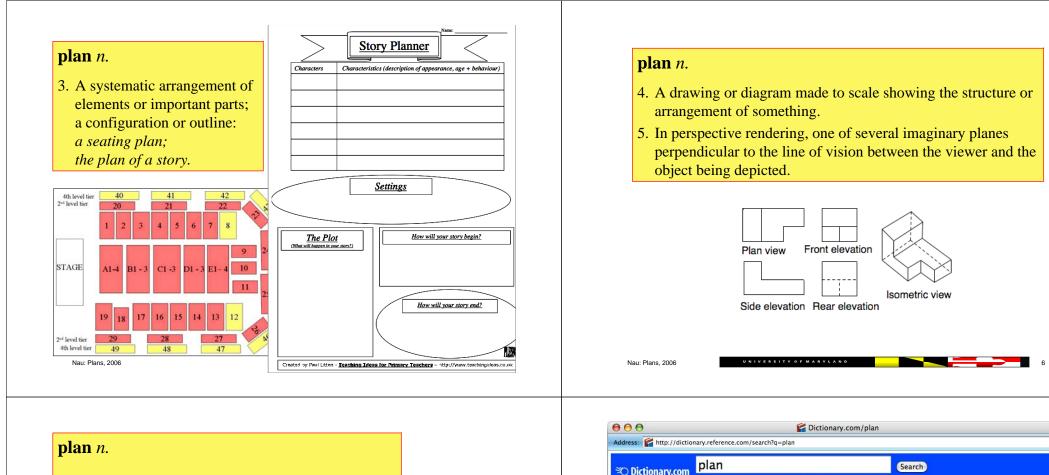
- 1. A scheme, program, or method worked out beforehand for the accomplishment of an objective: *a plan of attack*.
- 2. A proposed or tentative project or course of action: *had no plans for the evening*.
- 3. A systematic arrangement of elements or important parts; a configuration or outline: *a seating plan; the plan of a story*.

- 4. A drawing or diagram made to scale showing the structure or arrangement of something.
- 5. In perspective rendering, one of several imaginary planes perpendicular to the line of vision between the viewer and the object being depicted.
- 6. A program or policy stipulating a service or benefit: *a pension plan*.
- Synonyms: blueprint, design, project, scheme, strategy

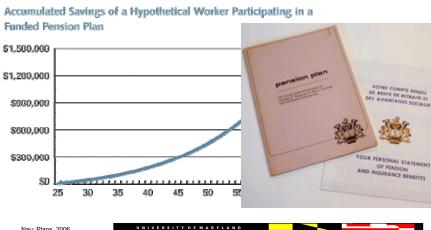
Nau: Plans, 2006

plan n.

1. A scheme, program, or method worked out beforehand for the accomplishment of an objective: *a plan of attack.*



plan n.


2. A proposed or tentative project or course of action: *had no plans for the evening.*

Nau: Plans, 2006

6. A program or policy stipulating a service or benefit: a pension plan.

plan n.

Home

1. A scheme, program, or method worked out beforehand for the accomplishment of an objective: a plan of attack.

Dictionary
 Thesaurus
 Web

UNIVERSITY OF MARYLAND

- 2. A proposed or tentative project or course of action: had no plans for the evening.
- 3. A systematic arrangement of elements or important parts; a configuration or outline: a seating plan; the plan of a story.

4. A drawing or diagram made to scale showing the structure or arrangement of something.

Premium: Sign up | Login

0

- 5. In perspective rendering, one of several imaginary planes perpendicular to the line of vision between the viewer and the object being depicted.
- 6. A program or policy stipulating a service or benefit: a pension plan.

Synonyms: blueprint, design, project, scheme, strategy

03 Establish datum point at bullseye (0.25, 1.00)		
[a representation] of future anter side-milling too t (-0.25, 1.25) pth 0.50	1	Generating Plans of Action
behavior usually a set of actions, with temporal and other constraints on them, for execution by some agent or agents Austin Tate [MIT Encyclopedia of the Cognitive Sciences, 1999] 02 Dry board in oven at 85 deg. F 005 B ECI 30.00 0.48 01 Setup 02 Spread photoresist from 18000 RPM spinner 005 C ECI 30.00 2.00 01 Setup 02 Photolithography of photoresist	1	 Computer programs to aid human planners Project management (consumer software) Plan storage and retrieval e.g., <i>variant process planning</i> in manufacturing Automatic schedule generation various OR and AI techniques For some problems, we would like generate plans (or pieces of plans) automatically
using phototool in "real.iges" 005 D EC1 30.00 20.00 01 Setup 02 Etching of copper 005 T EC1 90.00 54.77 01 Total time on EC1 006 A MC1 30.00 4.57 01 Setup 02 Prepare board for soldering 006 B MC1 30.00 0.29 01 Setup 006 C MCI 20.00 2.50 01 Setup	A portion of a manufacturing process plan	 » Much more difficult » Automated-planning research is starting to pay off • Here are some examples

Space Exploration

- Autonomous planning, scheduling, control
 - » NASA: JPL and Ames
- Remote Agent Experiment on Deep Space 1
- Mars rovers

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Games

• Bridge Baron - Great Game Products

LeadLow(P1; S)

StandardFinesseTwo(P2; S)

ð

PlayCard(P₂; S, R₂)

North— ♠3

Nau: Plans, 2006

» 2004: 2nd place

PlayCard(P₁; S, R₁)

West— ♠2

» 1997 world champion of computer bridge [Smith, Nau, and Throop, AI Magazine, 1998]
Us:East declarer, West dummy

Finesse(P₁; S)

EasyFinesse(P₂; S)

 $PlayCard(P_3; S, R_3)$

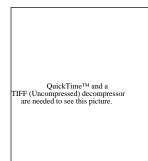
East— **▲**J

(North— \blacklozenge Q)

Outline

- Conceptual model for planning
- Example planning algorithms
- What's bad
- What's good

Nau: Plans, 2006


Nau: Plans, 2006

• Directions and trends

Related Reading

- My talk today is deliberately non-technical
- For technical details:
 - » Ghallab, Nau, and Traverso Automated Planning: Theory and Practice Morgan Kaufmann, May 2004
 - » First comprehensive textbook and reference work on automated planning
 - » For further information
 - http://www.laas.fr/planning

UNIVERSITY OF MARYLAND

15

Opponents: defenders, South & North

East: KJ74

West: A2

BustedFinesse(P₂; S)

(North— \bigstar 3)

FinesseFour(P₄; S)

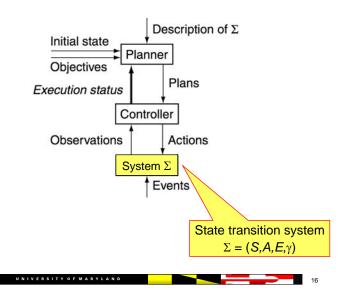
PlayCard(P₄; S, R₄')

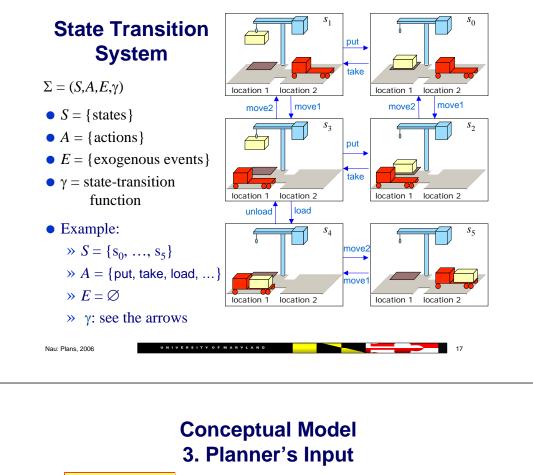
South— ♠O

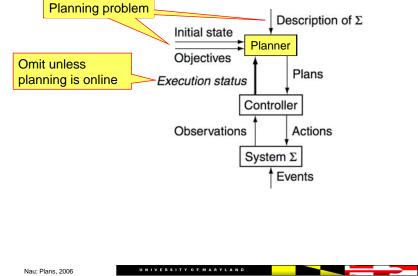
Contract:East - 3NT

FinesseTwo(P₂; S)

StandardFinesseThree(P₃; S)

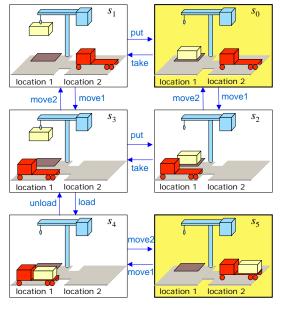

StandardFinesse(P₂; S)


 $PlayCard(P_4; S, R_4)$

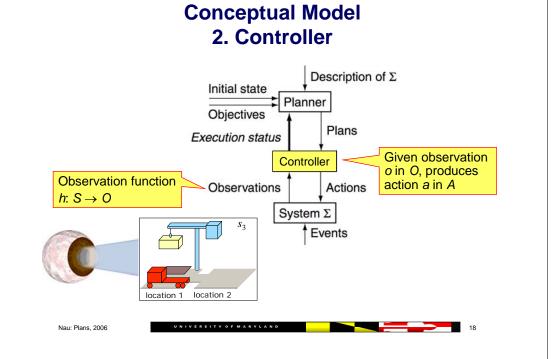

South— ♠5

On lead:West at trick 3

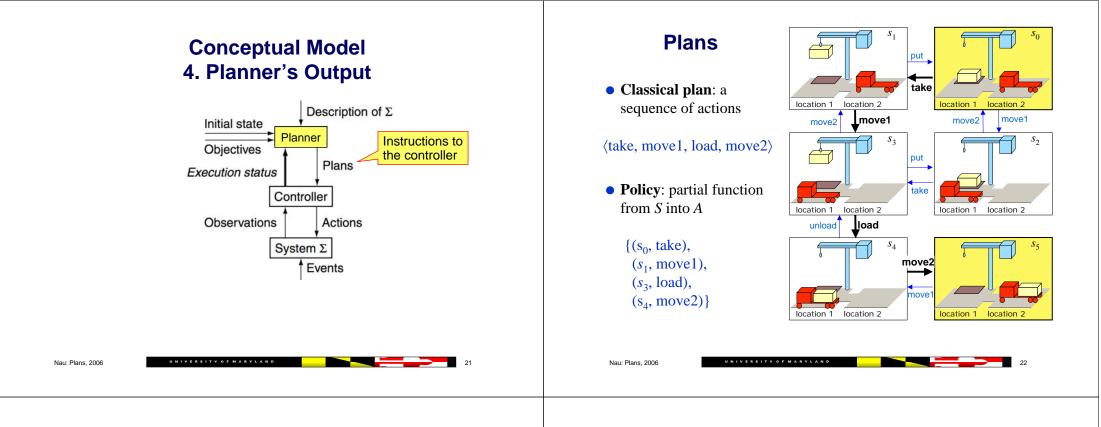
Conceptual Model 1. Environment

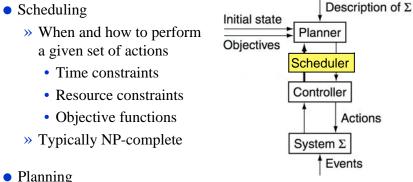


Planning Problem


- Description of Σ
- Initial state or set of states

\gg Initial state = s_0


- Objective
 - » Goal state, set of goal states, set of tasks,
 "trajectory" of states, objective function, ...
 - \gg Goal state = s_5


20

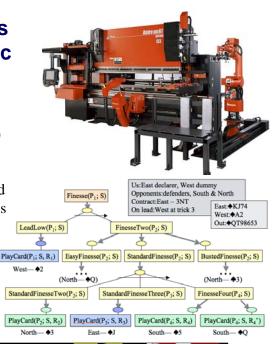
19

Planning Versus Scheduling

- Planning
 - » Decide what actions to use to achieve some set of objectives
 - » Can be much worse than NP-complete; worst case is undecidable

UNIVERSITY OF MARYLAND

Three Main Types of Planners


- 1. Domain-specific
- 2. Domain-independent
- 3. Configurable
- I'll briefly discuss each

23

Types of Planners 1. Domain-Specific

- Made or tuned for a specific domain
- Won't work well (if at all) in any other domain
- Most successful real-world planning systems work this way

Nau: Plans, 2006

Planner

Controller

System Σ

Events

Initial state

Objectives

Execution status

Observations

Description of Σ

Plans

Actions

• A0: Finite system:

- » finitely many states, actions, events
- A1: Fully observable:
 - » the controller always Σ 's current state
- A2: Deterministic:
 - » each action has only one outcome
- A3: Static (no exogenous events):
 - » no changes but the controller's actions
- A4: Attainment goals:
 - \gg a set of goal states S_g
- A5: Sequential plans:
 - » a plan is a linearly ordered sequence of actions $(a_1, a_2, \dots a_n)$
- A6: Implicit time:
 - » no time durations; linear sequence of instantaneous states

UNIVERSITY OF MARYLAND

Restrictive Assumptions

- A7: Off-line planning:
 - » planner doesn't know the execution status

Nau: Plans, 2006

Types of Planners 2. Domain-Independent

- In principle:
 - » Works in any planning domain
 - » No domain-specific knowledge except the definitions of the basic actions
- In practice:

Nau: Plans, 2006

- » Not feasible to develop domainindependent planners that work in *every* possible domain
- » Restrictive assumptions to simplify the set of domains
 - Classical planning
 - Historical focus of most research on automated planning

VERSITY OF MARVLAN

Classical Planning

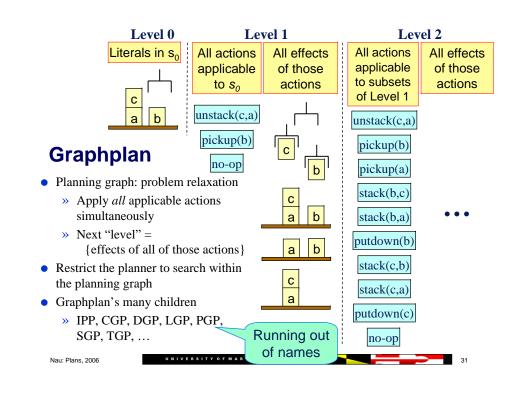
- Classical planning requires all eight restrictive assumptions
 - » Offline generation of action sequences for a deterministic, static, finite system, with complete knowledge, attainment goals, and implicit time
- Reduces to the following problem:
 - » Given (Σ, s_0, S_g)
 - » Find a sequence of actions (a₁, a₂, ..., a_n) that produces a sequence of state transitions (s₁, s₂, ..., s_n) such that s_n is in S_g.
- This is just path-searching in a graph
 - » Nodes = states
 - » Edges = actions
- Is this trivial?

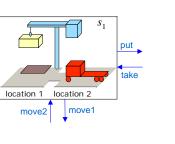
Nau: Plans, 2006

UNIVERSITY OF MARYLAND

2

Classical Planning


- Generalize the earlier example:
 - » Five locations, three robot carts, 100 containers, three piles
 - Then there are 10²⁷⁷ states
- Number of particles in the universe is only about 10⁸⁷


Nau: Plans, 2006

- » The example is more than 10^{190} times as large!
- Automated-planning research has been heavily dominated by classical planning
 - » Dozens (hundreds?) of different algorithms

UNIVERSITY OF MARVLAND

» I'll briefly mention a few of the best-known ones

С **Partial-Order Planning** а b • Decompose sets of goals into the Start individual goals dear(x), with x = a• Plan for them separately unstack(x,a)» Bookkeeping info to detect clear(a) and resolve interactions clear(b). putdown(x)handempty handempty pickup(b) pickup(a)

holding(a)

stack(a,b)

on(a,b)

а

b

с

Goal:

on(a,b) & on(b,c)

• For classical planning, stack(b,c) clear(b)

holding(a)

• Remote agent experiment and Mars rovers used temporal-planning extensions of it

UNIVERSITY OF MARYLANI

Heuristic Search

- Do an A*-style heuristic search guided by a *heuristic function* that estimates the distance to a goal
 - » Can use planning graphs to compute the heuristic function
- Problem: A* quickly runs out of memory
 - » So do a greedy search
- Greedy search can get trapped in local minima
 » Greedy search plus local search at local minima
- HSP [Bonet & Geffner]
- FastForward [Hoffmann]

Nau: Plans, 2006

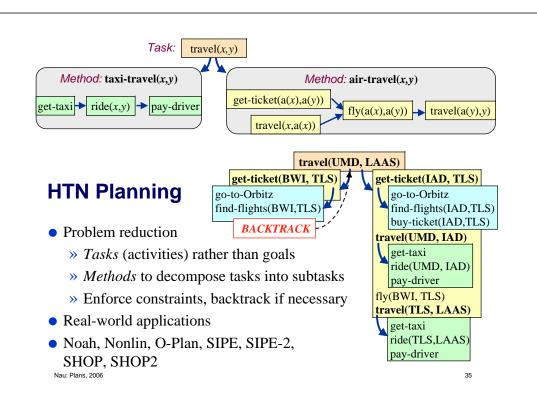
Nau: Plans, 2006

U

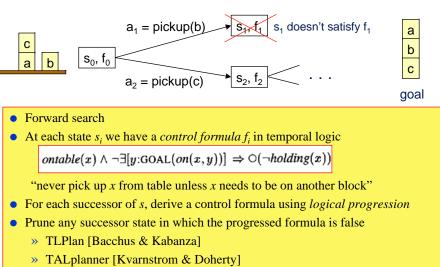
Translation to Other Domains

- Translate the planning problem or the planning graph into another kind of problem for which there are efficient solvers
 - » Find a solution to that problem
 - » Translate the solution back into a plan
- Satisfiability solvers, especially those that use local search
 - » Satplan and Blackbox [Kautz & Selman]
- Integer programming solvers such as Cplex

VERSITY OF MARVLAND

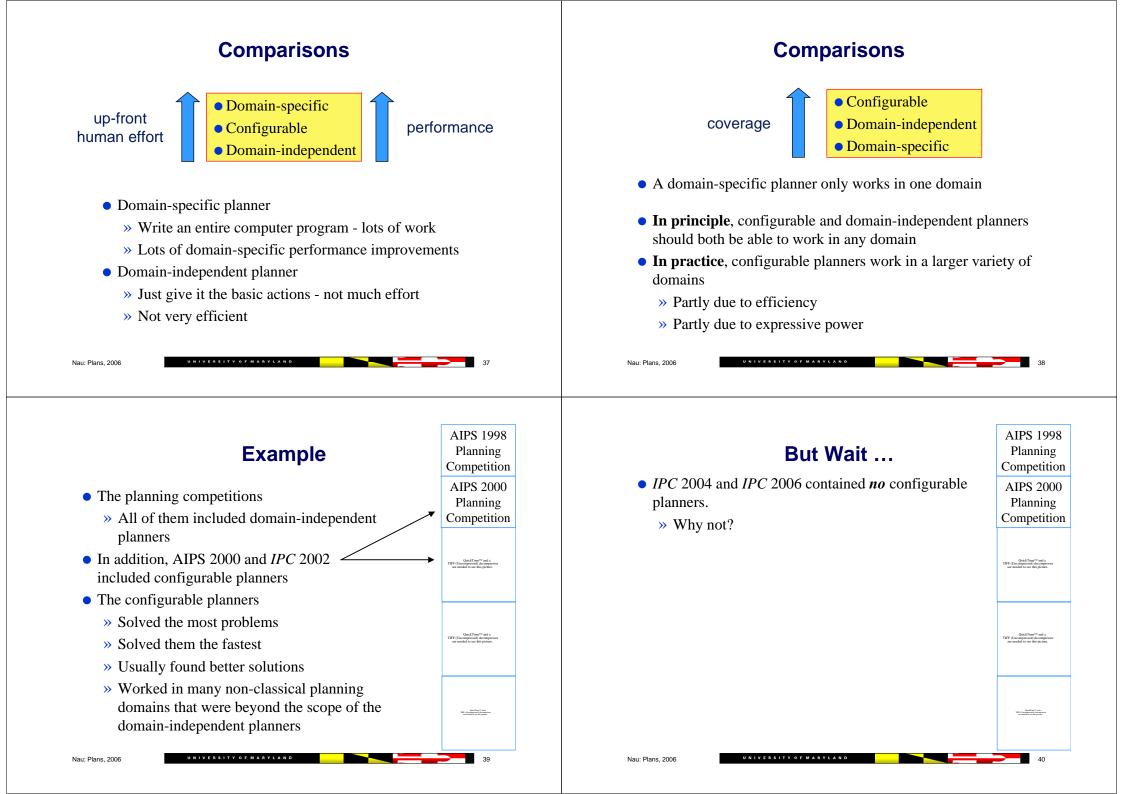

» [Vossen et al.]

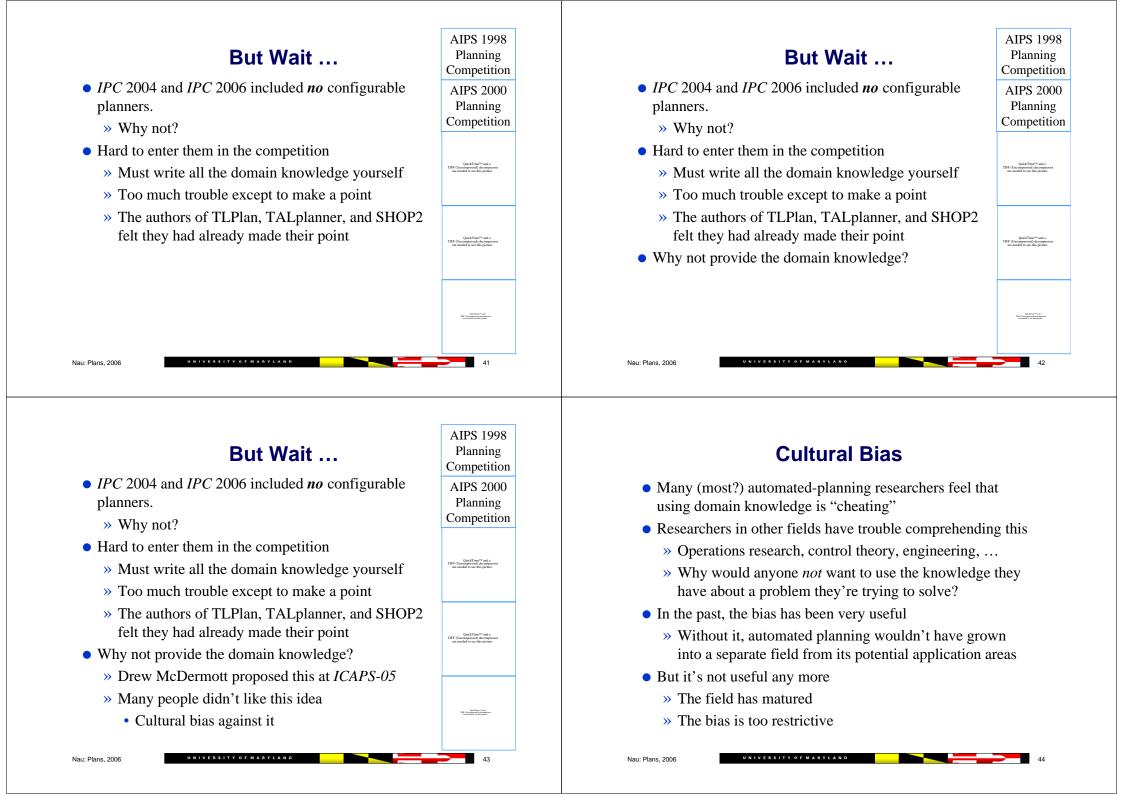
Nau: Plans, 2006


Types of Planners: 3. Configurable

- Domain-independent planners are quite slow compared with domain-specific planners
 - » Blocks world in linear time [Slaney and Thiébaux, A.I., 2001]
 - » Can get analogous results in many other domains
- But we don't want to write a whole new planner for every domain!
- Configurable planners
 - » Domain-independent planning engine
 - » Input includes info about how to solve problems in the domain
 - Hierarchical Task Network (HTN) planning
 - Planning with control formulas

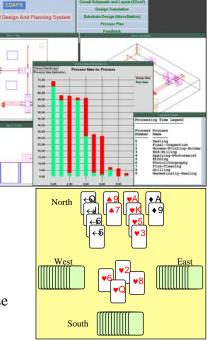
INIVERSITY OF MARVLAND




Planning with Control Formulas

Nau: Plans, 2006

Nau: Plans, 2006



Example

- Typical characteristics of application domains
 - » Dynamic world
 - » Multiple agents
 - » Imperfect/uncertain info
 - » External info sources
 - users, sensors, databases
 - » Durations, time constraints, asynchronous actions
 - » Numeric computations
 - geometry, probability, etc.
- Classical planning excludes all of these

Nau: Plans, 2006

In Other Words ...

- We **like** to think classical planning is domain-independent planning
- But it isn't!
 - » Classical planning only includes domains that satisfy some very specific restrictions
 - » Classical planners depend heavily on those restrictions
- This is fine for the **blocks world**
- Not so fine for the real world

Nau: Plans, 2006

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

VERSITY OF MARVLAND

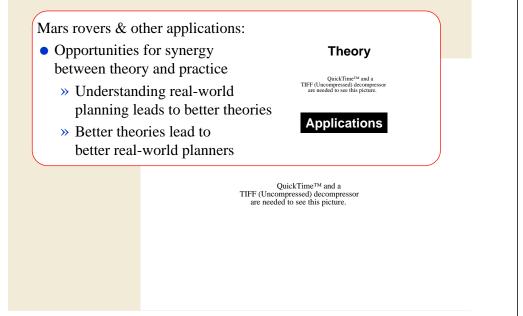
Good News, Part 1

- We're already moving away from classical planning
- Example: the planning competitions
 - » AIPS 1998, AIPS 2000, IPC 2002, IPC 2004
- Increasing divergence from classical planning
 - » 1998, 2000: classical planning
 - » 2002: added elementary notions of time durations, resources
 - » 2004: added inference rules, derived effects, and a separate track for planning under uncertainty
 - » 2006: added soft goals, trajectory constraints, preferences, plan metrics

UNIVERSITY OF MARYLAND

AIPS 1998 Planning Competition AIPS 2000 Planning Competition

> QuictTane^{ree} and a TEP (Uncompensat) decompensation are needed to see this statute.


> > 47

Good News, Part 2

- Success in high-profile applications
 - » A success like the Mars rovers is a big deal
 - » Creates excitement about building planners that work in the real world

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Good News, Part 3

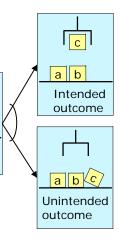
Good News, Part 4

- Classical planning research has produced some very powerful techniques for reducing the size of the search space
- We can generalize these techniques to work in non-classical domains
- Examples:

Nau: Plans, 2006

- 1. Partial order planning
 - Extended to do temporal planning

NIVERSITY OF MARVLAND


- > RAX (Deep Space 1)
- > Mars rovers
- 2. HTN planning
 - Lots of applications
- 3. Planning under uncertainty ...

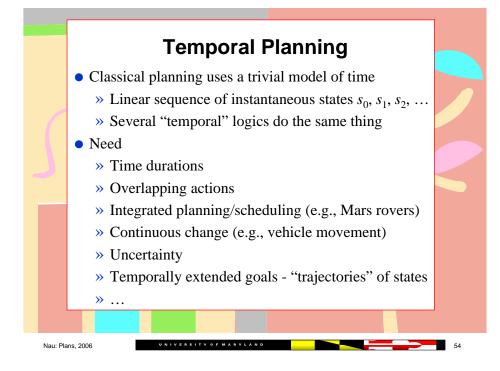
Digression: What planning under uncertainty is

- Actions with several possible outcomes
 - » Action failures gripper drops its load
 - » Exogenous events road closed
- Two primary models
 - » Markov Decision Processes (MDPs)
 - Probabilities, costs, rewards, optimize expected utility
 - Dynamic programming
 - » Nondeterministic planning domains
 - No numbers
 - Solutions: weak, strong, strong-cyclic, others

UNIVERSITY OF MARYLAND

• Symbolic model checking

a b


Grasp box c

Good News, Part 4 (continued)

- 3. General way to nondeterminize forward-chaining planners
 - » Rewrite them to work in nondeterministic domains
 - TLPlan \rightarrow ND-TLPlan
 - TALplanner \rightarrow ND-TALplanner
 - SHOP2 \rightarrow ND-SHOP2
 - » Big (exponential) speedups compared to previous planners for nondeterministic domains [Kuter and Nau, *AAAI*-04]
 - » Even bigger speedups if we use the BDD representation used in the previous planners for nondeterministic domains
 - [Kuter, Nau, Pistore, and Traverso, ICAPS-05]
- Analogous results for MDPs [Kuter and Nau, AAAI-05]

Nau: Plans, 2006

Planning in Dynamic Environments

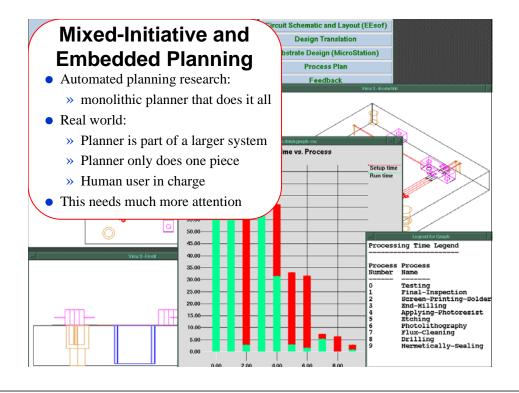
- Automated planning research
 - » Information is static; planner starts with all of it
- Real-world planning

Nau: Plans, 2006

- » Acquire information during planning and execution
 - Applications: web services, many others
- » What info to look for? Where to get it?

UNIVERSITY OF MARYLAND

- » How to deal with lag time and information volatility?
 - During execution
 - and during planning [Au et al., ECAI-04, 06]
- Candidate for a new IPC track?


Acquiring Domain Knowledge

- How to get the domain knowledge needed to plan efficiently?
 - » One of the most neglected topics for planning research, but one of the most important
 - » If we could do this well on real-world problems, planners would be hundreds of times more useful
- Researchers are starting to realize this
 - » At ICAPS-05 there was an informal "Knowledge Engineering Competition"

UNIVERSITY OF MARYLAND

- GUIs for creating knowledge bases for planning
- Ways for planners to learn domain knowledge
- Overlap with HCI, ML, and CBR

006

Overlap with Other Fields

- Various kinds of planning are studied in many different fields
 - » AI planning, computer games, game theory, OR, economics, psychology, sociology, political science, industrial engineering, systems science, control theory
- The research groups are often nearly disjoint
 - » Different terminology, assumptions, ideas of what's important
 - » Hard to tell what the similarities and differences are
- Potential for cross-pollination

Nau: Plans, 2006

» Combine ideas and approaches from different fields

UNIVERSITY OF MARYLAND

Example: Planning Under Uncertainty

- AI planning, OR, control theory all use MDP models
 - » OR & control theory
 - Infinitely many states, continuous sets
 - · Actions, costs, rewards: differentiable functions
 - Linear and nonlinear optimization
 - » Automated planning
 - Finitely many states
 - No good continuous approximations
 - Discrete optimization
- Many important problems are hybrids of both
 - » Combine and extend the techniques

Nau: Plans, 2006

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.